[1] |
Li Q, Lai Y, Wang C, et al. Matrine inhibits the proliferation, invasion and migration of castration-resistant prostate cancer cells through regulation of the NF-κB signaling pathway[J]. Oncol Rep, 2016, 35(1): 375-381.
|
[2] |
韩苏军,张思维,陈万青, 等. 中国前列腺癌发病现状和流行趋势分析[J]. 临床肿瘤学杂志, 2013, 18(4): 330-334.
|
[3] |
Thoreson G, Gayed B, Chung P, et al. Emerging therapies in castration resistant prostate cancer[J]. Can J Urol, 2014, 21(2 Supp 1): 98-105.
|
[4] |
Santanam U, Banach-Petrosky W, Abate-Shen C, et al. Atg7 cooperates with Pten loss to drive prostate cancer tumor growth[J]. Genes Dev, 2016, 30(4): 399-407.
|
[5] |
Wang C, Klionsky D. The molecular mechanism of autophagy[J]. Mol. Med, 2003, 9(3-4): 65-76.
|
[6] |
Xie R, Wang F, McKeehan W, et al. Autophagy enhanced by microtubule- and mitochondrion-associated MAP1S suppresses genome instability and hepatocarcinogenesis[J]. Cancer Res., 2011, 71(24): 7537-7546.
|
[7] |
Berrak O, Arisan E, Obakan-Yerlikaya P, et al. mTOR is a fine tuning molecule in CDK inhibitors-induced distinct cell death mechanisms via PI3K/AKT/mTOR signaling axis in prostate cancer cells[J]. Apoptosis, 2016, 21(10): 1158-1178.
|
[8] |
Jung C, Ro S, Cao J, et al. mTOR regulation of autophagy[J]. FEBS Lett, 2010, 584(7): 1287-1295.
|
[9] |
Garcia-Martinez JM, Alessi DR. mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1)[J]. Biochem J, 2008, 416(3): 375-385.
|
[10] |
Zhou L, Wang H, Ren H, et al. Bcl-2-dependent upregulation of autophagy by sequestosome 1/p62 in vitro[J]. Acta Pharmacol. Sin., 2013, 34(5): 651-656.
|
[11] |
Duran A, Amanchy R, Linares J, et al. p62 is a key regulator of nutrient sensing in the mTORC1 pathway[J]. Mol Cell, 2011, 44(1): 134-146.
|
[12] |
Jiang Q, Yeh S, Wang X, et al. Targeting androgen receptor leads to suppression of prostate cancer via induction of autophagy[J]. J Urol, 2012, 188(4): 1361-1368.
|
[13] |
Thi EP, Reiner NE. Phosphatidylinositol 3-kinases and their roles in phagosome maturation[J]. J Leukoc Biol, 2012, 92(3): 553-566.
|
[14] |
Mathiassen S, De Zio D, Cecconi F. Autophagy and the Cell Cycle: A Complex Landscape[J]. Front Oncol, 2017, 7 (Suppl 1): 51.
|
[15] |
Kim J, Kundu M, Viollet B, et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1[J]. Nat Cell Biol, 2011, 13(2): 132-141.
|
[16] |
Huang W, Choi W, Hu W, et al. Crystal structure and biochemical analyses reveal Beclin 1 as a novel membrane binding protein[J]. Cell Res., 2012, 22(3): 473-489.
|
[17] |
Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy[J]. Nat Rev Mol Cell Biol, 2018.
|
[18] |
Galluzzi L, Maiuri M, Vitale I, et al. Cell death modalities: classification and pathophysiological implications[J]. Cell Death Differ, 2007, 14(7): 1237-1243.
|
[19] |
Anastasiadis A, Stisser B, Ghafar M, et al. Tumor hypoxia and the progression of prostate cancer[J]. Curr Urol Rep, 2002, 3(3): 222-228.
|
[20] |
Shabisgh A, Tanji N, D'Agati V, et al. Early effects of castration on the vascular system of the rat ventral prostate gland[J]. Endocrinology, 1999, 140(4): 1920-1926.
|
[21] |
Zhang KX, Firus J, Prieur B, et al. To die or to survive, a fatal question for the destiny of prostate cancer cells after androgen deprivation therapy[J]. Cancers (Basel), 2011, 3(2): 1498-1512.
|
[22] |
Bennett H, Fleming J, O'Prey J, et al. Androgens modulate autophagy and cell death via regulation of the endoplasmic reticulum chaperone glucose-regulated protein 78/BiP in prostate cancer cells[J]. Cell Death Dis, 2010, 1(9): e72.
|
[23] |
Bennett H, Stockley J, Fleming J, et al. Does androgen-ablation therapy (AAT) associated autophagy have a pro-survival effect in LNCaP human prostate cancer cells?[J]. BJU Int, 2013, 111(4): 672-682.
|
[24] |
Kihara A, Kabeya Y, Ohsumi Y, et al. Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network[J]. EMBO Rep, 2001, 2(4): 330-335.
|
[25] |
黄炳臣,龙喜带. Bcl-2与Bax蛋白在肝细胞癌中的研究进展[J]. 齐齐哈尔医学院学报, 2012, 33(3): 355-356.
|
[26] |
Ciechomska I, Goemans G, Skepper J, et al. Bcl-2 complexed with Beclin-1 maintains full anti-apoptotic function[J]. Oncogene, 2009, 28(21): 2128-2141.
|
[27] |
Whitney M, Jefferson L, Kimball S. ATF4 is necessary and sufficient for ER stress-induced upregulation of REDD1 expression[J]. Biochem Biophys Res Commun, 2009, 379(2): 451-455.
|
[28] |
Xi H, Barredo J, Merchan J, et al. Endoplasmic reticulum stress induced by 2-deoxyglucose but not glucose starvation activates AMPK through CaMKKβ leading to autophagy[J]. Biochem Pharmacol, 2013, 85(10): 1463-1477.
|
[29] |
Nickerson T, Chang F, Lorimer D, et al. In vivo progression of LAPC-9 and LNCaP prostate cancer models to androgen independence is associated with increased expression of insulin-like growth factor I (IGF-I) and IGF-I receptor (IGF-IR)[J]. Cancer Res, 2001, 61(16): 6276-6280.
|
[30] |
Kumar R, Srinivasan S, Koduru S, et al. Psoralidin, an herbal molecule, inhibits phosphatidylinositol 3-kinase-mediated Akt signaling in androgen-independent prostate cancer cells[J]. Cancer Prev Res (Phila), 2009, 2(3): 234-243.
|
[31] |
Eisermann K, Fraizer G. The androgen receptor and vegf: mechanisms of androgen-regulated angiogenesis in prostate cancer[J]. Cancers (Basel), 2017, 9(4): 32.
|
[32] |
Dalby KN, Tekedereli I, Lopez-Berestein G, et al. Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer[J]. Autophagy, 2010, 6(3): 322-329.
|
[33] |
贺振华. 细胞内自噬与前列腺癌细胞PC3放射敏感性关系的实验研究[D]. 兰州大学, 2011.
|
[34] |
Kim S, Kim K, Yu S, et al. Autophagy inhibition enhances silibinin-induced apoptosis by regulating reactive oxygen species production in human prostate cancer PC-3 cells[J]. Biochem Biophys Res Commun, 2015, 468(1-2): 151-156.
|