切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2019, Vol. 13 ›› Issue (05) : 357 -360. doi: 10.3877/cma.j.issn.1674-3253.2019.05.018

所属专题: 文献

综述

自噬在雄激素抵抗型前列腺癌中的作用
马晓明1, 黄海1,()   
  1. 1. 510120 广州,中山大学孙逸仙纪念医院南院泌尿外科
  • 收稿日期:2017-06-01 出版日期:2019-10-01
  • 通信作者: 黄海
  • 基金资助:
    国家自然科学基金面上项目(81472382); 国家自然科学基金面上项目(81672550); 广东省科技社会发展项目(2017A020215018); 广东省国际科技合作领域(2016A050502020)

The function of autophagy in castrate resistant prostate cancer

Xiaoming Ma1, Hai Huang1()   

  • Received:2017-06-01 Published:2019-10-01
  • Corresponding author: Hai Huang
引用本文:

马晓明, 黄海. 自噬在雄激素抵抗型前列腺癌中的作用[J]. 中华腔镜泌尿外科杂志(电子版), 2019, 13(05): 357-360.

Xiaoming Ma, Hai Huang. The function of autophagy in castrate resistant prostate cancer[J]. Chinese Journal of Endourology(Electronic Edition), 2019, 13(05): 357-360.

[1]
Li Q, Lai Y, Wang C, et al. Matrine inhibits the proliferation, invasion and migration of castration-resistant prostate cancer cells through regulation of the NF-κB signaling pathway[J]. Oncol Rep, 2016, 35(1): 375-381.
[2]
韩苏军,张思维,陈万青, 等. 中国前列腺癌发病现状和流行趋势分析[J]. 临床肿瘤学杂志, 2013, 18(4): 330-334.
[3]
Thoreson G, Gayed B, Chung P, et al. Emerging therapies in castration resistant prostate cancer[J]. Can J Urol, 2014, 21(2 Supp 1): 98-105.
[4]
Santanam U, Banach-Petrosky W, Abate-Shen C, et al. Atg7 cooperates with Pten loss to drive prostate cancer tumor growth[J]. Genes Dev, 2016, 30(4): 399-407.
[5]
Wang C, Klionsky D. The molecular mechanism of autophagy[J]. Mol. Med, 2003, 9(3-4): 65-76.
[6]
Xie R, Wang F, McKeehan W, et al. Autophagy enhanced by microtubule- and mitochondrion-associated MAP1S suppresses genome instability and hepatocarcinogenesis[J]. Cancer Res., 2011, 71(24): 7537-7546.
[7]
Berrak O, Arisan E, Obakan-Yerlikaya P, et al. mTOR is a fine tuning molecule in CDK inhibitors-induced distinct cell death mechanisms via PI3K/AKT/mTOR signaling axis in prostate cancer cells[J]. Apoptosis, 2016, 21(10): 1158-1178.
[8]
Jung C, Ro S, Cao J, et al. mTOR regulation of autophagy[J]. FEBS Lett, 2010, 584(7): 1287-1295.
[9]
Garcia-Martinez JM, Alessi DR. mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1)[J]. Biochem J, 2008, 416(3): 375-385.
[10]
Zhou L, Wang H, Ren H, et al. Bcl-2-dependent upregulation of autophagy by sequestosome 1/p62 in vitro[J]. Acta Pharmacol. Sin., 2013, 34(5): 651-656.
[11]
Duran A, Amanchy R, Linares J, et al. p62 is a key regulator of nutrient sensing in the mTORC1 pathway[J]. Mol Cell, 2011, 44(1): 134-146.
[12]
Jiang Q, Yeh S, Wang X, et al. Targeting androgen receptor leads to suppression of prostate cancer via induction of autophagy[J]. J Urol, 2012, 188(4): 1361-1368.
[13]
Thi EP, Reiner NE. Phosphatidylinositol 3-kinases and their roles in phagosome maturation[J]. J Leukoc Biol, 2012, 92(3): 553-566.
[14]
Mathiassen S, De Zio D, Cecconi F. Autophagy and the Cell Cycle: A Complex Landscape[J]. Front Oncol, 2017, 7 (Suppl 1): 51.
[15]
Kim J, Kundu M, Viollet B, et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1[J]. Nat Cell Biol, 2011, 13(2): 132-141.
[16]
Huang W, Choi W, Hu W, et al. Crystal structure and biochemical analyses reveal Beclin 1 as a novel membrane binding protein[J]. Cell Res., 2012, 22(3): 473-489.
[17]
Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy[J]. Nat Rev Mol Cell Biol, 2018.
[18]
Galluzzi L, Maiuri M, Vitale I, et al. Cell death modalities: classification and pathophysiological implications[J]. Cell Death Differ, 2007, 14(7): 1237-1243.
[19]
Anastasiadis A, Stisser B, Ghafar M, et al. Tumor hypoxia and the progression of prostate cancer[J]. Curr Urol Rep, 2002, 3(3): 222-228.
[20]
Shabisgh A, Tanji N, D'Agati V, et al. Early effects of castration on the vascular system of the rat ventral prostate gland[J]. Endocrinology, 1999, 140(4): 1920-1926.
[21]
Zhang KX, Firus J, Prieur B, et al. To die or to survive, a fatal question for the destiny of prostate cancer cells after androgen deprivation therapy[J]. Cancers (Basel), 2011, 3(2): 1498-1512.
[22]
Bennett H, Fleming J, O'Prey J, et al. Androgens modulate autophagy and cell death via regulation of the endoplasmic reticulum chaperone glucose-regulated protein 78/BiP in prostate cancer cells[J]. Cell Death Dis, 2010, 1(9): e72.
[23]
Bennett H, Stockley J, Fleming J, et al. Does androgen-ablation therapy (AAT) associated autophagy have a pro-survival effect in LNCaP human prostate cancer cells?[J]. BJU Int, 2013, 111(4): 672-682.
[24]
Kihara A, Kabeya Y, Ohsumi Y, et al. Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network[J]. EMBO Rep, 2001, 2(4): 330-335.
[25]
黄炳臣,龙喜带. Bcl-2与Bax蛋白在肝细胞癌中的研究进展[J]. 齐齐哈尔医学院学报, 2012, 33(3): 355-356.
[26]
Ciechomska I, Goemans G, Skepper J, et al. Bcl-2 complexed with Beclin-1 maintains full anti-apoptotic function[J]. Oncogene, 2009, 28(21): 2128-2141.
[27]
Whitney M, Jefferson L, Kimball S. ATF4 is necessary and sufficient for ER stress-induced upregulation of REDD1 expression[J]. Biochem Biophys Res Commun, 2009, 379(2): 451-455.
[28]
Xi H, Barredo J, Merchan J, et al. Endoplasmic reticulum stress induced by 2-deoxyglucose but not glucose starvation activates AMPK through CaMKKβ leading to autophagy[J]. Biochem Pharmacol, 2013, 85(10): 1463-1477.
[29]
Nickerson T, Chang F, Lorimer D, et al. In vivo progression of LAPC-9 and LNCaP prostate cancer models to androgen independence is associated with increased expression of insulin-like growth factor I (IGF-I) and IGF-I receptor (IGF-IR)[J]. Cancer Res, 2001, 61(16): 6276-6280.
[30]
Kumar R, Srinivasan S, Koduru S, et al. Psoralidin, an herbal molecule, inhibits phosphatidylinositol 3-kinase-mediated Akt signaling in androgen-independent prostate cancer cells[J]. Cancer Prev Res (Phila), 2009, 2(3): 234-243.
[31]
Eisermann K, Fraizer G. The androgen receptor and vegf: mechanisms of androgen-regulated angiogenesis in prostate cancer[J]. Cancers (Basel), 2017, 9(4): 32.
[32]
Dalby KN, Tekedereli I, Lopez-Berestein G, et al. Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer[J]. Autophagy, 2010, 6(3): 322-329.
[33]
贺振华. 细胞内自噬与前列腺癌细胞PC3放射敏感性关系的实验研究[D]. 兰州大学, 2011.
[34]
Kim S, Kim K, Yu S, et al. Autophagy inhibition enhances silibinin-induced apoptosis by regulating reactive oxygen species production in human prostate cancer PC-3 cells[J]. Biochem Biophys Res Commun, 2015, 468(1-2): 151-156.
[1] 方晔, 谢晓红, 罗辉. 品管圈在提高前列腺癌穿刺检出率中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(07): 722-727.
[2] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[3] 周子慧, 李恭驰, 李炳辉, 王知, 刘慧真, 王卉, 邹利军. 细胞自噬在创面愈合中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 542-546.
[4] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[5] 樊丽超, 郭瑾瑛, 陈鑫. 野生型RET与RET/PTC融合基因检测对甲状腺乳头状癌中央区淋巴结清扫的指导意义[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 631-635.
[6] 袁育韬, 邢金琳, 谢克飞, 殷凯. CT征象及BRAFV600E基因突变与甲状腺乳头状癌中央区淋巴结转移的相关性[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 611-614.
[7] 李全喜, 唐辉军, 张健生, 杨飞. 基于MUSE-DWI与SS-DWI技术在前列腺癌图像中的对比研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 553-557.
[8] 梅津熠, 王燕, 瞿旻, 董振阳, 周增辉, 沈显琦, 李嘉伦, 高旭. 机器人前列腺癌根治术中"膀胱外中叶"的处理[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 429-433.
[9] 刘恒, 侯宇川. 膀胱癌新型灌注药物的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 445-451.
[10] 许丁伟, 马江云, 李新成, 黄洁. Alagille综合征疑诊为先天性胆道闭锁一例并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 681-687.
[11] 陈安, 冯娟, 杨振宇, 杜锡林, 柏强善, 阴继凯, 臧莉, 鲁建国. 基于生物信息学分析CCN4在肝细胞癌中表达及其临床意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 702-707.
[12] 王小红, 钱晶, 翁文俊, 周国雄, 朱顺星, 祁小鸣, 刘春, 王萍, 沈伟, 程睿智, 秦璟灏. 巯基丙酮酸硫基转移酶调控核因子κB信号介导自噬对重症急性胰腺炎大鼠的影响及机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 422-426.
[13] 王飞飞, 王光林, 孟泽松, 李保坤, 曹龙飞, 张娟, 周超熙, 丁源一, 王贵英. 敲低IMPDH1对结肠癌SW480、HT29细胞生物功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(08): 884-890.
[14] 高红琴, 陈晨, 陆瑞科, 王小雨, 张敏, 李少华, 郝梨岚, 黄新程, 关凌耀, 张韵红. 外阴阴道假丝酵母菌病对女性阴道-宫颈菌群的影响研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 720-725.
[15] 王苏贵, 皇立媛, 姜福金, 吴自余, 张先云, 李强, 严大理. 异质性细胞核核糖蛋白A2B1在前列腺癌中的作用及其靶向中药活性成分筛选研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 731-736.
阅读次数
全文


摘要