切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2021, Vol. 15 ›› Issue (04) : 354 -357. doi: 10.3877/cma.j.issn.1674-3253.2021.04.020

综述

腔镜时代体外冲击波碎石患者的选择
章璟1, 吕涛1, 张鹤1, 胡传义1, 崔心刚2, 姜宁1,()   
  1. 1. 200135 上海,浦东新区公利医院泌尿外科
    2. 201805 上海,海军军医大学第三附属医院泌尿外科
  • 收稿日期:2020-08-24 出版日期:2021-08-01
  • 通信作者: 姜宁
  • 基金资助:
    上海市医学重点专科建设计划项目(ZK2019A09); 上海市浦东新区临床高峰学科项目(PWYgf2018-03)

Selection of patients for extracorporeal shock wave lithotripsy in the era

Jing Zhang1, Tao Lu1, He Zhang1   

  • Received:2020-08-24 Published:2021-08-01
引用本文:

章璟, 吕涛, 张鹤, 胡传义, 崔心刚, 姜宁. 腔镜时代体外冲击波碎石患者的选择[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2021, 15(04): 354-357.

Jing Zhang, Tao Lu, He Zhang. Selection of patients for extracorporeal shock wave lithotripsy in the era[J/OL]. Chinese Journal of Endourology(Electronic Edition), 2021, 15(04): 354-357.

[1]
陆袁强,杜丹. 复杂性肾结石的微创治疗新进展[J/CD].中华腔镜泌尿外科杂志(电子版), 2018, 12(2): 136-138.
[2]
Rassweiler J, Rieker P, Rassweiler-Seyfried MC. Extracorporeal shockwave lithotripsy: is it still valid in the era of robotic endourology? Can it be more efficient? [J]. Curr Opin Urol, 2020, 30(2): 120-129.
[3]
Chung KJ, Kim JH, Min GE, et al. Changing trends in the treatment of nephrolithiasis in the real world[J]. J Endourol, 2019, 33(3): 248-253.
[4]
Cone EB, Pareek G, Ursiny M, et al. Cost-effectiveness comparison of ureteral calculi treated with ureteroscopic laser lithotripsy versus shock wave lithotripsy[J]. World J Urol, 2017, 35(1): 161-166.
[5]
Scotland KB, Safaee Ardekani G, Chan JYH, et al. Total surface area influences stone free outcomes in shock wave lithotripsy for distal ureteral calculi[J]. J Endourol, 2019, 33(8): 661-666.
[6]
Pradère B, Doizi S, Proietti S, et al. Evaluation of guidelines for surgical management of urolithiasis[J]. J Urol, 2018, 199(5): 1267-1271.
[7]
Chaussy CG, Tiselius HG. How can and should we optimize extracorporeal shockwave lithotripsy[J]? Urolithiasis, 2018, 46(1): 3-17.
[8]
Turk C, Petrik A, Sarica K, et al. EAU guidelines on diagnosis and conservative management of urolithiasis[J]. Eur Urol, 2016, 69(3): 468-474.
[9]
Torricelli FCM, Monga M, Yamauchi FI, et al. Renal stone features are more important than renal anatomy to predict shock wave lithotripsy outcomes: results from a prospective study with CT follow-up[J]. J Endourol, 2020, 34(1): 63-67.
[10]
Singh NP, Boyd CJ, Poore W, et al. Obesity and kidney stone procedures[J]. Rev Urol, 2020,22(1):24-29.
[11]
Hammad Ft, Balakrishnan A. The effect of fat and nonfat components of the skin-to-stone distance on shockwave lithotripsy outcome[J]. J Endourol, 2010, 24(11): 1825-1829.
[12]
Chaussy CG, Tiselius HG. How can and should we optimize extracorporeal shockwave lithotripsy[J]? Urolithiasis, 2018, 46(1): 3-17.
[13]
Mains EAA, Blackmur JP, Sharma AD, et al. Shock wave lithotripsy is an efficacious treatment modality for obese patients with upper ureteric calculi: logistic regression and matched-pair analyses from a dedicated centre comparing treatment outcomes by skin-stone distance[J]. J Endourol, 2020, 34(4): 487-494.
[14]
Pricop C, Radavoi GD, Puia D, et al. Obesity: a delicate issue choosing the ESWL treatment for patients with kidney and ureteral stone? [J]. Acta Endocrinol (Buchar), 2019, 15(1): 133-138.
[15]
Kaya C, Kaynak Y, Karabag A, et al. The predictive role of abdominal fat parameters and stone density on SWL outcomes[J]. Curr Med Imaging Rev, 2020, 16(1): 80-87.
[16]
李聪,王少刚. 体外冲击波碎石治疗后清石率的影响因素[J]. 中华泌尿外科杂志, 2018, 39(9): 718-720.
[17]
Mazzon G, Pavan N, Chiapparrone G, et al. Factors predictive of SWL failure for ureteral stones: why we need to hurry[J]. Minerva Urol Nefrol, 2019, 71(6): 644-650.
[18]
Hevia M, Garci A, Ancizu FJ, et al. Predicting the effectiveness of extracorporeal shock wave lithotripsy on urinary tract stones. Risk groups for accurate retreatment[J]. Actas Urol Esp, 2017, 41(7): 451-457.
[19]
Yamashita S, Kohjimoto Y, Iguchi T, et al. Variation coefficient of stone density: a novel predictor of the outcome of extracorporeal shockwave lithotripsy[J]. J Endourol, 2017, 31(4): 384-390.
[20]
Waqas M, Saqib I, Jamil MI, et al. Evaluating the importance of different computed tomography scan-based factors in predicting the outcome of extracorporeal shock wave lithotripsy for renal stones[J]. Investig Clin Urol, 2018, 59(1): 25-31.
[21]
Sugino Y, Kato T, Furuya S, et al. The usefulness of the maximum Hounsfield units (HU) in predicting the shockwave lithotripsy outcome for ureteral stones and the proposal of novel indicators using the maximum HU[J]. Urolithiasis, 2020, 48(1): 85-91.
[22]
Tran TY, Mcgillen K, Cone EB, et al. Triple D score is a reportable predictor of shockwave lithotripsy stone-free rates[J]. J Endourol, 2015, 29(2):226-230.
[23]
Ozgor F, Tosun M, Kayali Y, et al. External validation and evaluation of reliability and validity of the triple d score to predict stone-free status after extracorporeal shockwave lithotripsy[J]. J Endourol, 2017, 31(2): 169-173.
[24]
Ichiyanagi O, Fukuhara H, Kurokawa M, et al. Reinforcement of the Triple D score with simple addition of the intrarenal location for the prediction of the stone-free rate after shockwave lithotripsy for renal stones 10-20 mm in diameter[J]. Int Urol Nephrol, 2019, 51(2): 239-245.
[25]
Park HS, Gong MK, Yoon CY, et al. Computed tomography based novel prediction model for the outcome of shockwave lithotripsy in proximal ureteral stones[J]. J Endourol, 2016, 30(7): 810-816.
[26]
Cui HW, Silva MD, Mills AW, et al. Predicting shockwave lithotripsy outcome for urolithiasis using clinical and stone computed tomography texture analysis variables[J]. Sci Rep, 2019, 9(1): 14674.
[27]
Mannil M, Von Spiczak J, Hermanns T, et al. Three-dimensional texture analysis with machine learning provides incremental predictive information for successful shock wave lithotripsy in patients with kidney stones[J]. J Urol, 2018, 200(4):829-836.
[28]
Kim JK, Ha SB, Jeon CH et al. Clinical nomograms to predict stone-free rates after shock-wave lithotripsy: development and internal-validation[J]. PLoS One, 2016, 11(2): e0149333.
[29]
Niwa N, Matsumoto K, Miyahara M, et al. Simple and practical nomograms for predicting the stone-free rate after shock wave lithotripsy in patients with a solitary upper ureteral stone[J]. World J Urol, 2017, 35(9): 1455-1461.
[30]
Yoshioka T, Ikenoue T, Hashimoto H, et al. Development and validation of a prediction model for failed shockwave lithotripsy of upper urinary tract calculi using computed tomography information:the S3HoCKwave score[J]. World J Urol, 2020, 38(12): 3267-3273.
[31]
Shah M, Naik N, Somani BK, et al. Artificial intelligence (AI) in urology-Current use and future directions: An iTRUE study[J]. Turk J Urol, 2020, 46(Supp.1): S27-S39.
[32]
Aminsharifi A, Irani D, Tayebi S, et al.Predicting the postoperative otcome of percutaneous nephrolithotomy with machine learning system: software validation and comparative analysis with Guy's stone score and the CROES nomogram[J].J Endourol, 2020, 34(6): 692-699.
[33]
Seckiner I, Seckiner S, Sen H, et al. A neural network-based algorithm for predicting stone-free status after ESWL therapy[J]. Int Braz J Urol, 2017, 43(6): 1110-1114.
[34]
Choo MS, Uhmn S, Kim JK, et al. A prediction model using machine learning algorithm for assessing stone-free status after single session shock wave lithotripsy to treat ureteral stones[J].J Urol, 2018, 200(6): 1371-1377.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[3] 奚玲, 仝瀚文, 缪骥, 毛永欢, 沈晓菲, 杜峻峰, 刘晔. 基于肌少症构建的造口旁疝危险因素预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 48-51.
[4] 屈勤芳, 束方莲. 盆腔器官脱垂患者盆底重建手术后压力性尿失禁发生的影响因素及列线图预测模型构建[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 606-612.
[5] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[6] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[7] 黄俊龙, 李文双, 李晓阳, 刘柏隆, 陈逸龙, 丘惠平, 周祥福. 基于盆底彩超的人工智能模型在女性压力性尿失禁分度诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 597-605.
[8] 公宇, 廖媛, 尚梅. 肝细胞癌TACE术后复发影响因素及预测模型建立[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 818-824.
[9] 孙晗, 于冰, 武侠, 周熙朗. 基于循环肿瘤DNA 甲基化的结直肠癌筛查预测模型的构建与验证[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 500-506.
[10] 韦巧玲, 黄妍, 赵昌, 宋庆峰, 陈祖毅, 黄莹, 蒙嫦, 黄靖. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 715-721.
[11] 蔡晓雯, 李慧景, 丘婕, 杨翼帆, 吴素贤, 林玉彤, 何秋娜. 肝癌患者肝动脉化疗栓塞术后疼痛风险预测模型的构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 722-728.
[12] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
[13] 王誉英, 刘世伟, 王睿, 曾娅玲, 涂禧慧, 张蒲蓉. 老年乳腺癌新辅助治疗病理完全缓解的预测因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 641-646.
[14] 董晟, 郎胜坤, 葛新, 孙少君, 薛明宇. 反向休克指数乘以格拉斯哥昏迷评分对老年严重创伤患者发生急性创伤性凝血功能障碍的预测价值[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 541-547.
[15] 黄圣楷, 许斌, 苏健, 孙龙. 海南省2010~2020年乙型肝炎流行趋势的时间序列分析及预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 555-561.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?