[1] |
陆袁强,杜丹. 复杂性肾结石的微创治疗新进展[J/CD].中华腔镜泌尿外科杂志(电子版), 2018, 12(2): 136-138.
|
[2] |
Rassweiler J, Rieker P, Rassweiler-Seyfried MC. Extracorporeal shockwave lithotripsy: is it still valid in the era of robotic endourology? Can it be more efficient? [J]. Curr Opin Urol, 2020, 30(2): 120-129.
|
[3] |
Chung KJ, Kim JH, Min GE, et al. Changing trends in the treatment of nephrolithiasis in the real world[J]. J Endourol, 2019, 33(3): 248-253.
|
[4] |
Cone EB, Pareek G, Ursiny M, et al. Cost-effectiveness comparison of ureteral calculi treated with ureteroscopic laser lithotripsy versus shock wave lithotripsy[J]. World J Urol, 2017, 35(1): 161-166.
|
[5] |
Scotland KB, Safaee Ardekani G, Chan JYH, et al. Total surface area influences stone free outcomes in shock wave lithotripsy for distal ureteral calculi[J]. J Endourol, 2019, 33(8): 661-666.
|
[6] |
Pradère B, Doizi S, Proietti S, et al. Evaluation of guidelines for surgical management of urolithiasis[J]. J Urol, 2018, 199(5): 1267-1271.
|
[7] |
Chaussy CG, Tiselius HG. How can and should we optimize extracorporeal shockwave lithotripsy[J]? Urolithiasis, 2018, 46(1): 3-17.
|
[8] |
Turk C, Petrik A, Sarica K, et al. EAU guidelines on diagnosis and conservative management of urolithiasis[J]. Eur Urol, 2016, 69(3): 468-474.
|
[9] |
Torricelli FCM, Monga M, Yamauchi FI, et al. Renal stone features are more important than renal anatomy to predict shock wave lithotripsy outcomes: results from a prospective study with CT follow-up[J]. J Endourol, 2020, 34(1): 63-67.
|
[10] |
Singh NP, Boyd CJ, Poore W, et al. Obesity and kidney stone procedures[J]. Rev Urol, 2020,22(1):24-29.
|
[11] |
Hammad Ft, Balakrishnan A. The effect of fat and nonfat components of the skin-to-stone distance on shockwave lithotripsy outcome[J]. J Endourol, 2010, 24(11): 1825-1829.
|
[12] |
Chaussy CG, Tiselius HG. How can and should we optimize extracorporeal shockwave lithotripsy[J]? Urolithiasis, 2018, 46(1): 3-17.
|
[13] |
Mains EAA, Blackmur JP, Sharma AD, et al. Shock wave lithotripsy is an efficacious treatment modality for obese patients with upper ureteric calculi: logistic regression and matched-pair analyses from a dedicated centre comparing treatment outcomes by skin-stone distance[J]. J Endourol, 2020, 34(4): 487-494.
|
[14] |
Pricop C, Radavoi GD, Puia D, et al. Obesity: a delicate issue choosing the ESWL treatment for patients with kidney and ureteral stone? [J]. Acta Endocrinol (Buchar), 2019, 15(1): 133-138.
|
[15] |
Kaya C, Kaynak Y, Karabag A, et al. The predictive role of abdominal fat parameters and stone density on SWL outcomes[J]. Curr Med Imaging Rev, 2020, 16(1): 80-87.
|
[16] |
李聪,王少刚. 体外冲击波碎石治疗后清石率的影响因素[J]. 中华泌尿外科杂志, 2018, 39(9): 718-720.
|
[17] |
Mazzon G, Pavan N, Chiapparrone G, et al. Factors predictive of SWL failure for ureteral stones: why we need to hurry[J]. Minerva Urol Nefrol, 2019, 71(6): 644-650.
|
[18] |
Hevia M, Garci A, Ancizu FJ, et al. Predicting the effectiveness of extracorporeal shock wave lithotripsy on urinary tract stones. Risk groups for accurate retreatment[J]. Actas Urol Esp, 2017, 41(7): 451-457.
|
[19] |
Yamashita S, Kohjimoto Y, Iguchi T, et al. Variation coefficient of stone density: a novel predictor of the outcome of extracorporeal shockwave lithotripsy[J]. J Endourol, 2017, 31(4): 384-390.
|
[20] |
Waqas M, Saqib I, Jamil MI, et al. Evaluating the importance of different computed tomography scan-based factors in predicting the outcome of extracorporeal shock wave lithotripsy for renal stones[J]. Investig Clin Urol, 2018, 59(1): 25-31.
|
[21] |
Sugino Y, Kato T, Furuya S, et al. The usefulness of the maximum Hounsfield units (HU) in predicting the shockwave lithotripsy outcome for ureteral stones and the proposal of novel indicators using the maximum HU[J]. Urolithiasis, 2020, 48(1): 85-91.
|
[22] |
Tran TY, Mcgillen K, Cone EB, et al. Triple D score is a reportable predictor of shockwave lithotripsy stone-free rates[J]. J Endourol, 2015, 29(2):226-230.
|
[23] |
Ozgor F, Tosun M, Kayali Y, et al. External validation and evaluation of reliability and validity of the triple d score to predict stone-free status after extracorporeal shockwave lithotripsy[J]. J Endourol, 2017, 31(2): 169-173.
|
[24] |
Ichiyanagi O, Fukuhara H, Kurokawa M, et al. Reinforcement of the Triple D score with simple addition of the intrarenal location for the prediction of the stone-free rate after shockwave lithotripsy for renal stones 10-20 mm in diameter[J]. Int Urol Nephrol, 2019, 51(2): 239-245.
|
[25] |
Park HS, Gong MK, Yoon CY, et al. Computed tomography based novel prediction model for the outcome of shockwave lithotripsy in proximal ureteral stones[J]. J Endourol, 2016, 30(7): 810-816.
|
[26] |
Cui HW, Silva MD, Mills AW, et al. Predicting shockwave lithotripsy outcome for urolithiasis using clinical and stone computed tomography texture analysis variables[J]. Sci Rep, 2019, 9(1): 14674.
|
[27] |
Mannil M, Von Spiczak J, Hermanns T, et al. Three-dimensional texture analysis with machine learning provides incremental predictive information for successful shock wave lithotripsy in patients with kidney stones[J]. J Urol, 2018, 200(4):829-836.
|
[28] |
Kim JK, Ha SB, Jeon CH et al. Clinical nomograms to predict stone-free rates after shock-wave lithotripsy: development and internal-validation[J]. PLoS One, 2016, 11(2): e0149333.
|
[29] |
Niwa N, Matsumoto K, Miyahara M, et al. Simple and practical nomograms for predicting the stone-free rate after shock wave lithotripsy in patients with a solitary upper ureteral stone[J]. World J Urol, 2017, 35(9): 1455-1461.
|
[30] |
Yoshioka T, Ikenoue T, Hashimoto H, et al. Development and validation of a prediction model for failed shockwave lithotripsy of upper urinary tract calculi using computed tomography information:the S3HoCKwave score[J]. World J Urol, 2020, 38(12): 3267-3273.
|
[31] |
Shah M, Naik N, Somani BK, et al. Artificial intelligence (AI) in urology-Current use and future directions: An iTRUE study[J]. Turk J Urol, 2020, 46(Supp.1): S27-S39.
|
[32] |
Aminsharifi A, Irani D, Tayebi S, et al.Predicting the postoperative otcome of percutaneous nephrolithotomy with machine learning system: software validation and comparative analysis with Guy's stone score and the CROES nomogram[J].J Endourol, 2020, 34(6): 692-699.
|
[33] |
Seckiner I, Seckiner S, Sen H, et al. A neural network-based algorithm for predicting stone-free status after ESWL therapy[J]. Int Braz J Urol, 2017, 43(6): 1110-1114.
|
[34] |
Choo MS, Uhmn S, Kim JK, et al. A prediction model using machine learning algorithm for assessing stone-free status after single session shock wave lithotripsy to treat ureteral stones[J].J Urol, 2018, 200(6): 1371-1377.
|