切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2022, Vol. 16 ›› Issue (06) : 501 -507. doi: 10.3877/cma.j.issn.1674-3253.2022.06.004

临床研究

PI-RADS≤3分患者预测前列腺穿刺阳性列线图模型的构建
张泳欣1, 王忠泉2, 张水兴3, 肖学红1, 杨昂1, 唐秉航1, 黄红星4, 袁润强4, 卢扬柏4,()   
  1. 1. 528403 广东,中山市人民医院影像中心
    2. 528403 广东,中山市人民医院特诊中心门诊部
    3. 510630 广州,暨南大学附属第一医院影像中心
    4. 528403 广东,中山市人民医院泌尿外科
  • 收稿日期:2022-09-06 出版日期:2022-12-01
  • 通信作者: 卢扬柏
  • 基金资助:
    中山市人民医院放射影像中心重点专科科研项目(T2020016); 中山市科技计划项目(2019B1063,2020B1070,2020B1073); 中山市人民医院2022年度医院科研基金重大项目(BG20228249); 中山市人民医院高水平医院建设项目-泌尿外科(G330102097008)

Construction of a nomogram for predicting the risk of positiver prostate biospy with PI-RADS≤3

Yongxin Zhang1, Zhongquan Wang2, Shuixing Zhang3, Xuehong Xiao1, Ang Yang1, Binghang Tang1, Hongxing Huang4, Runqiang Yuan4, Yangbai Lu4,()   

  1. 1. Department of Radiology, Zhongshan City People's Hospital Affiliated to Sun Yat sen University, Guangdong 528403, China
    2. Department of Kangyi VIP Outpatient Clinic, Zhongshan City People's Hospital Affiliated to Sun Yat sen University, Guangdong 528403, China
    3. Department of Radiology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
    4. Department of Urology, Zhongshan City People's Hospital Affiliated to Sun Yat sen University, Guangdong 528403, China
  • Received:2022-09-06 Published:2022-12-01
  • Corresponding author: Yangbai Lu
引用本文:

张泳欣, 王忠泉, 张水兴, 肖学红, 杨昂, 唐秉航, 黄红星, 袁润强, 卢扬柏. PI-RADS≤3分患者预测前列腺穿刺阳性列线图模型的构建[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2022, 16(06): 501-507.

Yongxin Zhang, Zhongquan Wang, Shuixing Zhang, Xuehong Xiao, Ang Yang, Binghang Tang, Hongxing Huang, Runqiang Yuan, Yangbai Lu. Construction of a nomogram for predicting the risk of positiver prostate biospy with PI-RADS≤3[J/OL]. Chinese Journal of Endourology(Electronic Edition), 2022, 16(06): 501-507.

目的

探讨前列腺影像报告及数据系统(PI-RADS.v2.1)联合前列腺特异性抗原及其他参数构建的列线图模型对PI-RADS≤3分患者活检阳性的预测价值。

方法

回顾性分析2018年1月至2021年12月198例在中山市人民医院接受经直肠超声穿刺前列腺首次活检患者的临床血清学和影像学资料,应用Logistic多因素回归分析前列腺癌相关独立风险因素,并构建对前列腺PI-RADS≤3分病变的列线图模型,利用受试者工作曲线、校准曲线和决策曲线对模型进行评估。

结果

多因素Logistic回归分析显示年龄(P<0.001)、PI-RADS(P=0.017)、游离PSA/总PSA(FPSA/TPSA) (P=0.049)及移行带体积(TZV) (P<0.001)是前列腺癌的独立危险因素。基于多变量构建的融合模型效能最优(AUC=0.823,95%CI=0.762~0.885),敏感性81.3%,特异性78.8%,准确性79.8%。校准曲线显示其预测概率与病理结果有良好的一致性。决策曲线显示模型具有良好的临床应用价值。

结论

基于多变量构建的列线图及预测模型能较好地术前预测患前列腺癌的风险。

Objective

To investigate the predictive value of the nomogram model based on prostate imaging reporting and data system (PI-RADS v2.1) combined with prostate-specific antigen and other parameters for puncture in patients with PI-RADS≤3.

Methods

The clinical serological and imaging data of 198 patients who underwent transrectal ultrasound for the first prostate biopsy in Zhongshan People's Hospital from January 2018 to December 2021 were retrospectively analyzed, and the risk scores were analyzed by Logistic multifactor regression. The independent risk factors related to prostate cancer were analyzed, and the rosette model of prostate PI-RADS≤3 was constructed, and the model was evaluated by the subject operating curve, calibration curve and decision curve.

Results

Multivariate logistic regression analysis showed that age (P<0.001), PI-RADS (P=0.017), FPSA/TPSA (P=0.049) and TZV (P<0.001) were statistically significant independent risk factors for prostate cancer. The fusion model based on multivariable construction had the best performance, with (AUC=0.823, 95%CI=0.762-0.885), sensitivity 81.3%, specificity 78.8%, accuracy 79.8%. The calibration curve showed a good agreement between the predicted probabilities of fusion model and pathologic findings. The decision curve model had good clinical application value.

Conclusion

The nomogram and prediction model can better predict the risk of prostate cancer before surgery.

图1 患者纳入流程
表1 198例前列腺病变患者的临床资料
表2 198例前列腺病变患者的临床资料单因素和多因素Logistic回归分析
图2 多因素回归模型绘制列线图注:预测患者得前列腺癌概率,模型中包含年龄、PI-RADS、FPSA/TPSA及TZV 4个变量。每个变量都被评分,总分的范围是0~180。恶性风险轴上的总分代表患前列腺癌的概率。分数越高,患者得前列腺癌的风险就越高
图3 融合模型及单一变量对前列腺癌预测效能的ROC曲线注:融合模型AUC=0.823,95%CI=0.762~0.885,敏感性81.3%,特异性78.8%,准确性79.8%
表3 融合模型及单一变量模型对PI-RADS≤3的病变患前列腺癌预测效能
图4 列线图的校准曲线
图5 列线图的决策曲线分析
[1]
Alonzo DG, Mure AL, Soloway MS. Prostate cancer and the increasing role of active surveillance[J]. Postgrad Med, 2013, 125(5): 109-116.
[2]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
[3]
Inahara M, Suzuki H, Kojima S, et al. Improved prostate cancer detection using systematic 14-core biopsy for large prostate glands with normal digital rectal examination findings[J]. Urology, 2006, 68(4): 815-819.
[4]
Barrett T, Rajesh A, Rosenkrantz AB, et al. PI-RADS version 2.1: one small step for prostate MRI[J]. Clin Radiol, 2019, 74(11): 841-852.
[5]
Oishi M, Shin T, Ohe C, et al. Which Patients with Negative Magnetic Resonance Imaging Can Safely Avoid Biopsy for Prostate Cancer?[J]. J Urol, 2019, 201(2): 268-276.
[6]
Urase Y, Ueno Y, Tamada T, et al. Comparison of prostate imaging reporting and data system v2.1 and 2 in transition and peripheral zones: evaluation of interreader agreement and diagnostic performance in detecting clinically significant prostate cancer[J]. Br J Radiol, 2022, 95(1131): 20201434.
[7]
孔垂泽等黄健王建业. 中国泌尿外科和男性疾病诊断治疗指南[M]. 2019.
[8]
Epstein JI, Egevad L, Amin M B, et al. The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System[J]. Am J Surg Pathol, 2016, 40(2): 244-252.
[9]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1): 7-30.
[10]
陶金, 于栓宝, 范雅峰, 等. 基于机器学习模型分析不进行穿刺活检的前列腺根治术的可行性[J/CD]. 中华腔镜泌尿外科杂志(电子版), 2022, 16(1): 7-13.
[11]
Vickers AJ. Prostate Cancer Screening: Time to Question How to Optimize the Ratio of Benefits and Harms[J]. Ann Intern Med, 2017, 167(7): 509-510.
[12]
Gjertson C K, Albertsen P C. Use and assessment of PSA in prostate cancer[J]. Med Clin North Am, 2011,95(1):191-200.
[13]
Tabayoyong W, Abouassaly R. Prostate Cancer Screening and the Associated Controversy[J]. Surg Clin North Am, 2015, 95(5): 1023-1039.
[14]
Carter H B, Pearson JD, Metter EJ, et al. Longitudinal evaluation of prostate-specific antigen levels in men with and without prostate disease[J]. JAMA, 1992, 267(16): 2215-2220.
[15]
Kim TJ, Lee MS, Hwang SI, et al. Outcomes of magnetic resonance imaging fusion-targeted biopsy of prostate imaging reporting and data system 3 lesions[J]. World J Urol, 2019, 37(8): 1581-1586.
[16]
Martina M, Valeria P, Augusto M, et al. Prostate imaging reporting and data system 3 category cases at multiparametric magnetic resonance for prostate cancer: a systematic review and meta-analysis[J]. Eur Urol Focus, 2020, 3(6): 463-478.
[17]
Zhang Y, Zeng N, Zhang F, et al. How to make clinical decisions to avoid unnecessary prostate screening in biopsy-naive men with PI-RADs v2 score ≤3?[J]. Int J Clin Oncol, 2020, 25(1): 175-186.
[18]
李方龙, 李德维, 张一琰, 等. 预测前列腺穿刺阳性风险的列线图模型的建立[J].中华泌尿外科杂志, 2016, 37(08): 616-620.
[19]
Hu C, Sun J, Xu Z, Zhang Z, et al. Development and external validation of a novel nomogram to predict prostate cancer in biopsy-naïve patients with PSA <10 ng/ml and PI-RADS v2.1 = 3 lesions[J]. Cancer Med. 2022 Aug 3.
[1] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[2] 奚玲, 仝瀚文, 缪骥, 毛永欢, 沈晓菲, 杜峻峰, 刘晔. 基于肌少症构建的造口旁疝危险因素预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 48-51.
[3] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[4] 屈勤芳, 束方莲. 盆腔器官脱垂患者盆底重建手术后压力性尿失禁发生的影响因素及列线图预测模型构建[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 606-612.
[5] 祝炜安, 林华慧, 吴建杰, 黄炯煅, 吴婷婷, 赖文杰. RDM1通过CDK4促进前列腺癌细胞进展的研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 618-625.
[6] 王功炜, 李书豪, 魏松, 吕博然, 胡成. 溶瘤病毒M1对不同前列腺癌细胞杀伤效果的研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 626-632.
[7] 施一辉, 张平新, 朱勇, 杨德林. 机器人辅助前列腺根治术后切缘阳性的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 633-637.
[8] 公宇, 廖媛, 尚梅. 肝细胞癌TACE术后复发影响因素及预测模型建立[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 818-824.
[9] 张瑜, 姜梦妮. 基于DWI信号值构建局部进展期胰腺癌放化疗生存获益预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 657-664.
[10] 王贝贝, 崔振义, 王静, 王晗妍, 吕红芝, 李秀婷. 老年股骨粗隆间骨折患者术后贫血预测模型的构建与验证[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 355-362.
[11] 孙晗, 于冰, 武侠, 周熙朗. 基于循环肿瘤DNA 甲基化的结直肠癌筛查预测模型的构建与验证[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 500-506.
[12] 韦巧玲, 黄妍, 赵昌, 宋庆峰, 陈祖毅, 黄莹, 蒙嫦, 黄靖. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 715-721.
[13] 蔡晓雯, 李慧景, 丘婕, 杨翼帆, 吴素贤, 林玉彤, 何秋娜. 肝癌患者肝动脉化疗栓塞术后疼痛风险预测模型的构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 722-728.
[14] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
[15] 董晟, 郎胜坤, 葛新, 孙少君, 薛明宇. 反向休克指数乘以格拉斯哥昏迷评分对老年严重创伤患者发生急性创伤性凝血功能障碍的预测价值[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 541-547.
阅读次数
全文


摘要