切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2022, Vol. 16 ›› Issue (06) : 501 -507. doi: 10.3877/cma.j.issn.1674-3253.2022.06.004

临床研究

PI-RADS≤3分患者预测前列腺穿刺阳性列线图模型的构建
张泳欣1, 王忠泉2, 张水兴3, 肖学红1, 杨昂1, 唐秉航1, 黄红星4, 袁润强4, 卢扬柏4,()   
  1. 1. 528403 广东,中山市人民医院影像中心
    2. 528403 广东,中山市人民医院特诊中心门诊部
    3. 510630 广州,暨南大学附属第一医院影像中心
    4. 528403 广东,中山市人民医院泌尿外科
  • 收稿日期:2022-09-06 出版日期:2022-12-01
  • 通信作者: 卢扬柏
  • 基金资助:
    中山市人民医院放射影像中心重点专科科研项目(T2020016); 中山市科技计划项目(2019B1063,2020B1070,2020B1073); 中山市人民医院2022年度医院科研基金重大项目(BG20228249); 中山市人民医院高水平医院建设项目-泌尿外科(G330102097008)

Construction of a nomogram for predicting the risk of positiver prostate biospy with PI-RADS≤3

Yongxin Zhang1, Zhongquan Wang2, Shuixing Zhang3, Xuehong Xiao1, Ang Yang1, Binghang Tang1, Hongxing Huang4, Runqiang Yuan4, Yangbai Lu4,()   

  1. 1. Department of Radiology, Zhongshan City People's Hospital Affiliated to Sun Yat sen University, Guangdong 528403, China
    2. Department of Kangyi VIP Outpatient Clinic, Zhongshan City People's Hospital Affiliated to Sun Yat sen University, Guangdong 528403, China
    3. Department of Radiology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
    4. Department of Urology, Zhongshan City People's Hospital Affiliated to Sun Yat sen University, Guangdong 528403, China
  • Received:2022-09-06 Published:2022-12-01
  • Corresponding author: Yangbai Lu
引用本文:

张泳欣, 王忠泉, 张水兴, 肖学红, 杨昂, 唐秉航, 黄红星, 袁润强, 卢扬柏. PI-RADS≤3分患者预测前列腺穿刺阳性列线图模型的构建[J]. 中华腔镜泌尿外科杂志(电子版), 2022, 16(06): 501-507.

Yongxin Zhang, Zhongquan Wang, Shuixing Zhang, Xuehong Xiao, Ang Yang, Binghang Tang, Hongxing Huang, Runqiang Yuan, Yangbai Lu. Construction of a nomogram for predicting the risk of positiver prostate biospy with PI-RADS≤3[J]. Chinese Journal of Endourology(Electronic Edition), 2022, 16(06): 501-507.

目的

探讨前列腺影像报告及数据系统(PI-RADS.v2.1)联合前列腺特异性抗原及其他参数构建的列线图模型对PI-RADS≤3分患者活检阳性的预测价值。

方法

回顾性分析2018年1月至2021年12月198例在中山市人民医院接受经直肠超声穿刺前列腺首次活检患者的临床血清学和影像学资料,应用Logistic多因素回归分析前列腺癌相关独立风险因素,并构建对前列腺PI-RADS≤3分病变的列线图模型,利用受试者工作曲线、校准曲线和决策曲线对模型进行评估。

结果

多因素Logistic回归分析显示年龄(P<0.001)、PI-RADS(P=0.017)、游离PSA/总PSA(FPSA/TPSA) (P=0.049)及移行带体积(TZV) (P<0.001)是前列腺癌的独立危险因素。基于多变量构建的融合模型效能最优(AUC=0.823,95%CI=0.762~0.885),敏感性81.3%,特异性78.8%,准确性79.8%。校准曲线显示其预测概率与病理结果有良好的一致性。决策曲线显示模型具有良好的临床应用价值。

结论

基于多变量构建的列线图及预测模型能较好地术前预测患前列腺癌的风险。

Objective

To investigate the predictive value of the nomogram model based on prostate imaging reporting and data system (PI-RADS v2.1) combined with prostate-specific antigen and other parameters for puncture in patients with PI-RADS≤3.

Methods

The clinical serological and imaging data of 198 patients who underwent transrectal ultrasound for the first prostate biopsy in Zhongshan People's Hospital from January 2018 to December 2021 were retrospectively analyzed, and the risk scores were analyzed by Logistic multifactor regression. The independent risk factors related to prostate cancer were analyzed, and the rosette model of prostate PI-RADS≤3 was constructed, and the model was evaluated by the subject operating curve, calibration curve and decision curve.

Results

Multivariate logistic regression analysis showed that age (P<0.001), PI-RADS (P=0.017), FPSA/TPSA (P=0.049) and TZV (P<0.001) were statistically significant independent risk factors for prostate cancer. The fusion model based on multivariable construction had the best performance, with (AUC=0.823, 95%CI=0.762-0.885), sensitivity 81.3%, specificity 78.8%, accuracy 79.8%. The calibration curve showed a good agreement between the predicted probabilities of fusion model and pathologic findings. The decision curve model had good clinical application value.

Conclusion

The nomogram and prediction model can better predict the risk of prostate cancer before surgery.

图1 患者纳入流程
表1 198例前列腺病变患者的临床资料
表2 198例前列腺病变患者的临床资料单因素和多因素Logistic回归分析
图2 多因素回归模型绘制列线图注:预测患者得前列腺癌概率,模型中包含年龄、PI-RADS、FPSA/TPSA及TZV 4个变量。每个变量都被评分,总分的范围是0~180。恶性风险轴上的总分代表患前列腺癌的概率。分数越高,患者得前列腺癌的风险就越高
图3 融合模型及单一变量对前列腺癌预测效能的ROC曲线注:融合模型AUC=0.823,95%CI=0.762~0.885,敏感性81.3%,特异性78.8%,准确性79.8%
表3 融合模型及单一变量模型对PI-RADS≤3的病变患前列腺癌预测效能
图4 列线图的校准曲线
图5 列线图的决策曲线分析
[1]
Alonzo DG, Mure AL, Soloway MS. Prostate cancer and the increasing role of active surveillance[J]. Postgrad Med, 2013, 125(5): 109-116.
[2]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
[3]
Inahara M, Suzuki H, Kojima S, et al. Improved prostate cancer detection using systematic 14-core biopsy for large prostate glands with normal digital rectal examination findings[J]. Urology, 2006, 68(4): 815-819.
[4]
Barrett T, Rajesh A, Rosenkrantz AB, et al. PI-RADS version 2.1: one small step for prostate MRI[J]. Clin Radiol, 2019, 74(11): 841-852.
[5]
Oishi M, Shin T, Ohe C, et al. Which Patients with Negative Magnetic Resonance Imaging Can Safely Avoid Biopsy for Prostate Cancer?[J]. J Urol, 2019, 201(2): 268-276.
[6]
Urase Y, Ueno Y, Tamada T, et al. Comparison of prostate imaging reporting and data system v2.1 and 2 in transition and peripheral zones: evaluation of interreader agreement and diagnostic performance in detecting clinically significant prostate cancer[J]. Br J Radiol, 2022, 95(1131): 20201434.
[7]
孔垂泽等黄健王建业. 中国泌尿外科和男性疾病诊断治疗指南[M]. 2019.
[8]
Epstein JI, Egevad L, Amin M B, et al. The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System[J]. Am J Surg Pathol, 2016, 40(2): 244-252.
[9]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1): 7-30.
[10]
陶金, 于栓宝, 范雅峰, 等. 基于机器学习模型分析不进行穿刺活检的前列腺根治术的可行性[J/CD]. 中华腔镜泌尿外科杂志(电子版), 2022, 16(1): 7-13.
[11]
Vickers AJ. Prostate Cancer Screening: Time to Question How to Optimize the Ratio of Benefits and Harms[J]. Ann Intern Med, 2017, 167(7): 509-510.
[12]
Gjertson C K, Albertsen P C. Use and assessment of PSA in prostate cancer[J]. Med Clin North Am, 2011,95(1):191-200.
[13]
Tabayoyong W, Abouassaly R. Prostate Cancer Screening and the Associated Controversy[J]. Surg Clin North Am, 2015, 95(5): 1023-1039.
[14]
Carter H B, Pearson JD, Metter EJ, et al. Longitudinal evaluation of prostate-specific antigen levels in men with and without prostate disease[J]. JAMA, 1992, 267(16): 2215-2220.
[15]
Kim TJ, Lee MS, Hwang SI, et al. Outcomes of magnetic resonance imaging fusion-targeted biopsy of prostate imaging reporting and data system 3 lesions[J]. World J Urol, 2019, 37(8): 1581-1586.
[16]
Martina M, Valeria P, Augusto M, et al. Prostate imaging reporting and data system 3 category cases at multiparametric magnetic resonance for prostate cancer: a systematic review and meta-analysis[J]. Eur Urol Focus, 2020, 3(6): 463-478.
[17]
Zhang Y, Zeng N, Zhang F, et al. How to make clinical decisions to avoid unnecessary prostate screening in biopsy-naive men with PI-RADs v2 score ≤3?[J]. Int J Clin Oncol, 2020, 25(1): 175-186.
[18]
李方龙, 李德维, 张一琰, 等. 预测前列腺穿刺阳性风险的列线图模型的建立[J].中华泌尿外科杂志, 2016, 37(08): 616-620.
[19]
Hu C, Sun J, Xu Z, Zhang Z, et al. Development and external validation of a novel nomogram to predict prostate cancer in biopsy-naïve patients with PSA <10 ng/ml and PI-RADS v2.1 = 3 lesions[J]. Cancer Med. 2022 Aug 3.
[1] 方晔, 谢晓红, 罗辉. 品管圈在提高前列腺癌穿刺检出率中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(07): 722-727.
[2] 孙帼, 谢迎东, 徐超丽, 杨斌. 超声联合临床特征的列线图模型预测甲状腺乳头状癌淋巴结转移的价值[J]. 中华医学超声杂志(电子版), 2023, 20(07): 734-742.
[3] 王思思, 金晶, 汪婕. 初产妇哺乳期乳腺炎发生的影响因素及风险模型构建[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 272-276.
[4] 张俊, 罗再, 段茗玉, 裘正军, 黄陈. 胃癌预后预测模型的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 456-461.
[5] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[6] 甄子铂, 刘金虎. 基于列线图模型探究静脉全身麻醉腹腔镜胆囊切除术患者术后肠道功能紊乱的影响因素[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 61-65.
[7] 贾成朋, 王代宏, 陈华, 孙备. 可切除性胰腺癌预后术前预测模型的建立及应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 566-570.
[8] 李全喜, 唐辉军, 张健生, 杨飞. 基于MUSE-DWI与SS-DWI技术在前列腺癌图像中的对比研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 553-557.
[9] 梅津熠, 王燕, 瞿旻, 董振阳, 周增辉, 沈显琦, 李嘉伦, 高旭. 机器人前列腺癌根治术中"膀胱外中叶"的处理[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 429-433.
[10] 徐慧新, 刘波, 唐立钧. 体外冲击波治疗>1 cm输尿管上段结石失败的预测模型建立[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 506-511.
[11] 王立涛, 刘恩瑞, 李振鲁, 吴昌亮, 高鹏. 基于SEER数据库手术后原发性阑尾肿瘤患者预后列线图构建与验证[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 404-414.
[12] 杨静, 顾红叶, 赵莹莹, 孙梦霞, 查园园, 王琪. 老年血液透析患者短期死亡的影响因素及列线图预测模型的预测作用[J]. 中华肾病研究电子杂志, 2023, 12(05): 254-259.
[13] 李飞翔, 段虎斌, 李晋虎, 吴昊, 王永红, 范益民. 急性颅脑损伤继发下肢静脉血栓的相关危险因素分析及预测模型构建[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 277-282.
[14] 王亚丹, 吴静, 黄博洋, 王苗苗, 郭春梅, 宿慧, 王沧海, 王静, 丁鹏鹏, 刘红. 白光内镜下结直肠肿瘤性质预测模型的构建与验证[J]. 中华临床医师杂志(电子版), 2023, 17(06): 655-661.
[15] 王苏贵, 皇立媛, 姜福金, 吴自余, 张先云, 李强, 严大理. 异质性细胞核核糖蛋白A2B1在前列腺癌中的作用及其靶向中药活性成分筛选研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 731-736.
阅读次数
全文


摘要