[1] |
Bray F,Laversanne M,Sung H,et al. Global cancer statistics 2022:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin,2024,74(3): 229-263.
|
[2] |
郑荣寿,陈茹,韩冰峰,等. 2022年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志,2024,46(3): 221-231.Zheng RS,Chen R,Han BF,et al. Cancer incidence and mortality in China,2022[J]. China J Oncol,2024,46(3): 221-231.
|
[3] |
单锋芝,高小超,刘进亮,等. 前列腺癌患者血清PSA和总睾酮水平变化与病理Gleason评分和预后的相关性[J]. 中国卫生工程学,2024,23(1): 101-102+105.Shan FZ,Gao XC,Liu JL,et al. The correlation between changes in serum PSA and total testosterone levels and pathological Gleason score and prognosis in prostate cancer patients[J].Chin J of Public Health Eng,2024,23(1): 101-102+105.
|
[4] |
汪正斌,温诚浩,张力. TP53突变在前列腺癌发生发展以及治疗与预后评估中作用的研究进展[J]. 临床泌尿外科杂志,2024,39(2): 167-171.Wang ZB,Wen CH,Zhang L. Research progress on the role of TP53 mutation in the occurrence,development,treatment,and prognosis evaluation of prostate cancer[J]. J Clin Urol,2024,39(2): 167-171.
|
[5] |
Sekhoacha M,Riet K,Motloung P,et al. Prostate cancer review:genetics,diagnosis,treatment options,and alternative approaches[J].Molecules,2022,27(17): 5730.
|
[6] |
程兆瑞,王彤. 人工智能技术在肝细胞癌诊断、复发及预后预测研究进展[J]. 中山大学学报(医学科学版),2023,44(6): 903-909.Cheng ZR,Wang T. Research progress in artificial intelligence for diagnosis,prediction of recurrence and prognosis in hepatocellular carcinoma[J]. J Sun Yat Sen Univ Med Sci,2023,44(6): 903-909.
|
[7] |
Amgad M,Hodge JM,Elsebaie MAT,et al. A population-level digital histologic biomarker for enhanced prognosis of invasive breast cancer[J]. Nat Med,2024,30(1): 85-97.
|
[8] |
Zeng Q,Klein C,Caruso S,et al. Artificial intelligence-based pathology as a biomarker of sensitivity to atezolizumab-bevacizumab in patients with hepatocellular carcinoma: a multicentre retrospective study[J]. Lancet Oncol,2023,24(12): 1411-1422.
|
[9] |
Jiang X,Hoffmeister M,Brenner H,et al. End-to-end prognostication in colorectal cancer by deep learning: a retrospective,multicentre study[J]. Lancet Digit Health,2024,6(1): e33-e43.
|
[10] |
任相阁,翟文生,李冰. 人工智能在肾移植领域中的应用进展[J].器官移植,2023,14(4): 505-513.Ren XG,Zhai WS,Li B. Research progress on application of artificial intelligence in the field of kidney transplantation[J]. Organ Transplant,2023,14(4): 505-513.
|
[11] |
Tan YG,Fang AHS,Lim JKS,et al. Incorporating artificial intelligence in urology: supervised machine learning algorithms demonstrate comparative advantage over nomograms in predicting biochemical recurrence after prostatectomy[J]. Prostate,2022,82(3):298-305.
|
[12] |
Wang H,Wang K,Zhang Y,et al. Deep learning-based radiomics model from pretreatment ADC to predict biochemical recurrence in advanced prostate cancer[J]. Front Oncol,2024,14: 1342104.
|
[13] |
Shiradkar R,Ghose S,Jambor I,et al. Radiomic features from pretreatment biparametric MRI predict prostate cancer biochemical recurrence: preliminary findings[J]. J Magn Reson Imaging,2018,48(6): 1626-1636.
|
[14] |
张志国. 不同b值弥散加权成像在前列腺中央腺体病变良恶性鉴别中的诊断价值及参数分析[J]. 影像研究与医学应用,2023,7(9): 22-24.Zhang ZG. Diagnostic value and parameter analysis of diffusion weighted imaging with different b-values in the differentiation of benign and malignant prostate central gland lesions[J]. J Imaging Res Med App,2023,7(9): 22-24.
|
[15] |
Cheng H,Vinci-Booher S,Wang J,et al. Denoising diffusion weighted imaging data using convolutional neural networks[J]. PLoS One,2022,17(9): e0274396.
|
[16] |
Lawal I O,Ndlovu H,Kgatle M,et al. Prognostic value of PSMA PET/CT in prostate cancer[J]. Semin Nucl Med,2024,54(1): 46-59.
|
[17] |
Leung KH,Rowe SP,Sadaghiani MS,et al. Deep semisupervised transfer learning for fully automated whole-body tumor quantification and prognosis of cancer on PET/CT[J]. J Nucl Med,2024,65(4):643-650.
|
[18] |
Epstein JI,Egevad L,Amin MB,et al. The 2014 international society of urological pathology (ISUP) consensus conference on gleason grading of prostatic carcinoma: definition of grading patterns and proposal for a new grading system[J]. Am J Surg Pathol,2016,40(2):244-252.
|
[19] |
Zhu L,Pan J,Mou W,et al. Harnessing artificial intelligence for prostate cancer management[J]. Cell Rep Med,2024,5(4): 101506.
|
[20] |
Yamamoto Y,Tsuzuki T,Akatsuka J,et al. Automated acquisition of explainable knowledge from unannotated histopathology images[J].Nat Commun,2019,10(1): 5642.
|
[21] |
Huang W,Randhawa R,Jain P,et al. A novel artificial intelligencepowered method for prediction of early recurrence of prostate cancer after prostatectomy and cancer drivers[J]. JCO Clin Cancer Inform,2022,6: e2100131.
|
[22] |
Donovan MJ,Fernandez G,Scott R,et al. Development and validation of a novel automated Gleason grade and molecular profile that define a highly predictive prostate cancer progression algorithmbased test[J]. Prostate Cancer Prostatic Dis,2018,21(4): 594-603.
|
[23] |
Lee G,Veltri RW,Zhu G,et al. Nuclear shape and architecture in benign fields predict biochemical recurrence in prostate cancer patients following radical prostatectomy: preliminary findings[J]. Eur Urol Focus,2017,3(4/5): 457-466.
|
[24] |
Park J,Rho MJ,Moon HW,et al. Dr. answer AI for prostate cancer:predicting biochemical recurrence following radical prostatectomy[J].Technol Cancer Res Treat,2021,20: 15330338211024660.
|
[25] |
Esteva A,Feng J,van der Wal D,et al. Prostate cancer therapy personalization via multi-modal deep learning on randomized phase III clinical trials[J]. NPJ Digit Med,2022,5(1): 71.
|
[26] |
Bibault JE,Hancock S,Buyyounouski MK,et al. Development and validation of an interpretable artificial intelligence model to predict 10-year prostate cancer mortality[J]. Cancers,2021,13(12): 3064.
|
[27] |
Sathianathen NJ,Furrer MA,Mulholland CJ,et al. Lymphovascular invasion at the time of radical prostatectomy adversely impacts oncological outcomes[J]. Cancers,2023,16(1): 123.
|
[28] |
Kartasalo K,Ström P,Ruusuvuori P,et al. Detection of perineural invasion in prostate needle biopsies with deep neural networks[J].Virchows Arch,2022,481(1): 73-82.
|
[29] |
Wessels F,Schmitt M,Krieghoff-Henning E,et al. Deep learning approach to predict lymph node metastasis directly from primary tumour histology in prostate cancer[J]. BJU Int,2021,128(3): 352-360.
|
[30] |
Wei L,Huang Y,Chen Z,et al. Artificial intelligence combined with big data to predict lymph node involvement in prostate cancer:a population-based study[J]. Front Oncol,2021,11: 763381.
|