切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2023, Vol. 17 ›› Issue (05) : 440 -444. doi: 10.3877/cma.j.issn.1674-3253.2023.05.003

专家论坛

机器人辅助手术在儿童微创泌尿手术中的应用和展望
吴少峰, 张轶男, 孙杰()   
  1. 200127 上海交通大学医学院附属上海儿童医学中心泌尿外科
    572000 三亚,上海儿童医学中心附属海南医院小儿外科
  • 收稿日期:2023-01-09 出版日期:2023-10-01
  • 通信作者: 孙杰
  • 基金资助:
    浦东新区科技发展基金(PKJ2020-Y04)

Application and prospect of robot-assisted surgery in minimally invasive urological surgery in children

Shaofeng Wu, Yinan Zhang, Jie Sun()   

  • Received:2023-01-09 Published:2023-10-01
  • Corresponding author: Jie Sun
引用本文:

吴少峰, 张轶男, 孙杰. 机器人辅助手术在儿童微创泌尿手术中的应用和展望[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 440-444.

Shaofeng Wu, Yinan Zhang, Jie Sun. Application and prospect of robot-assisted surgery in minimally invasive urological surgery in children[J]. Chinese Journal of Endourology(Electronic Edition), 2023, 17(05): 440-444.

对微创外科而言,机器人辅助(robotic assisted,RA)外科技术带来了革命性的创新,展现了很多优势,包括三维立体视野,腕式器械,消除了术者的手部震颤及控制精细操作[1]。RA技术用于儿童手术的最早报道见于2001年行Nissen胃底折叠术[2,3],但其应用也晚于成人外科将近10年。小儿泌尿外科也是最早将机器人辅助技术用于外科手术的学科之一。2004年,波士顿儿童医院的Peters[4]首次报道了机器人在小儿泌尿外科手术中的应用,并很快用于儿童肾盂成形术的临床治疗中[5]。与其他新技术、新设备和治疗方式一样,机器人手术在儿童中的应用比在成人中进展慢,这很大程度上是由于没有适当尺寸手术器械所致[6]。有文献统计,至2012年,共计1 840例患儿进行了2 393次机器人辅助手术,其中约36.8%为机器人辅助消化道手术[7]。近年来,器械设计开发也逐渐满足儿童患者的需求,目前国外绝大多数医疗机构都提供了该项技术,国内越来越多的儿童医院亦开始引进该项技术。

[1]
Lorincz A, Langenburg S, Klein MD. Robotics and the pediatric surgeon [J]. Curr Opin Pediatr, 2003, 15(3): 262-266.
[2]
Meininger DD, Byhahn C, Heller K, et al. Totally endoscopic nissen fundoplication with a robotic system in a child [J]. Surg Endosc, 2001, 15(11): 1360.
[3]
Fernandez N, Farhat WA. A Comprehensive analysis of robot-assisted surgery uptake in the pediatric surgical discipline [J]. Front Surg, 2019, 6: 9.
[4]
Peters CA. Robotically assisted surgery in pediatric urology [J]. Urol Clin North Am, 2004, 31(4): 743-752.
[5]
Atug F, Woods M, Burgess SV, et al. Robotic assisted laparoscopic pyeloplasty in children [J]. J Urol, 2005, 174(4 Pt 1): 1440-1442.
[6]
Bergholz R, Botden S, Verweij J, et al. Evaluation of a new robotic-assisted laparoscopic surgical system for procedures in small cavities [J]. J Robot Surg, 2020, 14(1): 191-197.
[7]
Cundy TP, Shetty K, Clark J, et al. The first decade of robotic surgery in children [J]. J Pediatr Surg, 2013, 48(4): 858-865.
[8]
Molinaro F, Angotti R, Bindi E, et al. Low weight child: can it be considered a limit of robotic surgery? experience of two centers [J]. J Laparoendosc Adv Surg Tech A, 2019, 29(5): 698-702.
[9]
Navarrete Arellano M, Garibay González F. Robot-assisted laparoscopic and thoracoscopic surgery: prospective series of 186 pediatric surgeries [J]. Front Pediatr, 2019, 7: 200.
[10]
Tasian GE, Wiebe DJ, Casale P. Learning curve of robotic assisted pyeloplasty for pediatric urology fellows [J]. J Urol, 2013, 190(4 Suppl): 1622-1666.
[11]
Kassite I, Braik K, Villemagne T, et al. The learning curve of robot-assisted laparoscopic pyeloplasty in children: a multi-outcome approach [J]. J Pediatr Urol, 2018, 14(6): 570.e1-570.e10.
[12]
Dothan D, Raisin G, Jaber J, et al. Learning curve of robotic-assisted laparoscopic pyeloplasty (RALP) in children: how to reach a level of excellence? [J]. J Robot Surg, 2021, 15(1): 93-97.
[13]
Spampinato G, Binet A, Fourcade L, et al. Comparison of the learning curve for robot-assisted laparoscopic pyeloplasty between senior and junior surgeons [J]. J Laparoendosc Adv Surg Tech A, 2021, 31(4): 478-483.
[14]
Pio L, Musleh L, Paraboschi I, et al. Learning curve for robotic surgery in children: a systematic review of outcomes and fellowship programs [J]. J Robot Surg, 2020, 14(4): 531-541.
[15]
Denning NL, Kallis MP, Prince JM. Pediatric robotic surgery [J]. Surg Clin North Am, 2020, 100(2): 431-443.
[16]
Sforza S, Cini C, Negri E, et al. Ureteral reimplantation for primary obstructive megaureter in pediatric patients: is it time for robot-assisted approach? [J]. J Laparoendosc Adv Surg Tech A, 2022, 32(2): 231-236.
[17]
Avery DI, Herbst KW, Lendvay TS, et al. Robot-assisted laparoscopic pyeloplasty: Multi-institutional experience in infants [J]. J Pediatr Urol, 2015, 11(3): 139.e1-e5.
[18]
Varda BK, Wang Y, Chung BI, et al. Has the robot caught up? National trends in utilization, perioperative outcomes, and cost for open, laparoscopic, and robotic pediatric pyeloplasty in the United States from 2003 to 2015 [J]. J Pediatr Urol, 2018, 14(4): 336.e1-.e8.
[19]
Mittal S, Srinivasan A. Robotics in pediatric urology: evolution and the future [J]. Urol Clin North Am, 2021, 48(1): 113-125.
[20]
Sun J. The asian continent: is it ready for new technology? A chinese perspective [M]. Pediatric Robotic and Reconstructive Urol, 2011: 312-313.
[21]
徐哲, 谢钧韬, 高文宗, 等. 达芬奇机器人手术治疗小儿肾积水的初步经验[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2017, 11(3): 9-12.
[22]
刘德鸿, 周辉霞, 马立飞, 等. 机器人辅助腹腔镜肾盂成形术治疗小婴儿肾积水的初步经验[J]. 中华泌尿外科杂志, 2019, 40(1): 2-7.
[23]
熊祥华, 周辉霞, 曹华林, 等. 机器人辅助腹腔镜小儿上尿路手术的体位、操作通道设计和机械臂安装应用体会 [J]. 中华泌尿外科杂志, 2018, 39(8): 601-605.
[24]
Fuchs ME, DaJusta DG. Robotics in pediatric urology [J]. Int Braz J Urol, 2020, 46(3): 322-327.
[25]
Cundy TP, Harley SJD, Marcus HJ, et al. Global trends in paediatric robot-assisted urological surgery: a bibliometric and progressive scholarly acceptance analysis [J]. J Robot Surg, 2018, 12(1): 109-115.
[26]
Morales-López RA, Pérez-Marchán M, Pérez Brayfield M. Current concepts in pediatric robotic assisted pyeloplasty[J]. Front Pediatr, 2019, 7: 4.
[27]
González ST, Rosito TE, Tur AB, et al. Multicenter comparative study of open, laparoscopic, and robotic pyeloplasty in the pediatric population for the treatment of ureteropelvic junction obstruction (UPJO) [J]. Int Braz J Urol, 2022, 48(6): 961-968.
[28]
Kutikov A, Nguyen M, Guzzo T, et al. Robot assisted pyeloplasty in the infant-lessons learned [J]. J Urol, 2006, 176(5): 2237-2240.
[29]
Kawal T, Srinivasan AK, Shrivastava D, et al. Pediatric robotic-assisted laparoscopic pyeloplasty: Does age matter? [J]. J Pediatr Urol, 2018, 14(6): 540.e1-540.e6.
[30]
Kafka IZ, Kocherov S, Jaber J, et al. Pediatric robotic-assisted laparoscopic pyeloplasty (RALP): does weight matter? [J]. Pediatr Surg Int, 2019, 35(3): 391-396.
[31]
Mittal S, Aghababian A, Eftekharzadeh S, et al. Primary vs redo robotic pyeloplasty: A comparison of outcomes [J]. J Pediatr Urol, 2021, 17(4): 528.e1-528.e7.
[32]
Baek M, Koh CJ. Lessons learned over a decade of pediatric robotic ureteral reimplantation [J]. Investig Clin Urol, 2017, 58(1): 3-11.
[33]
Sahadev R, Spencer K, Srinivasan AK, et al. The robot-assisted extravesical anti-reflux surgery: how we overcame the learning curve [J]. Front Pediatr, 2019, 7: 93.
[34]
Boysen WR, Ellison JS, Kim C, et al. Multi-Institutional review of outcomes and complications of robot-assisted laparoscopic extravesical ureteral reimplantation for treatment of primary vesicoureteral reflux in children [J]. J Urol, 2017, 197(6): 1555-1561.
[35]
Mattioli G, Lena F, Fiorenza V, Carlucci M. Robotic ureteral reimplantation and uretero-ureterostomy treating the ureterovesical junction pathologies in children: technical considerations and preliminary results[J]. J Robot Surg, 2023, 17(2): 659-667.
[36]
Chandrasekharam VVS, Babu R. Robot-assisted laparoscopic extravesical versus conventional laparoscopic extravesical ureteric reimplantation for pediatric primary vesicoureteric reflux: a systematic review and meta-analysis [J]. Pediatr Surg Int, 2020, 36(11): 1371-1378.
[37]
Wiestma AC, Cho PS, Hollis MV, et al. Robot-assisted laparoscopic lower pole partial nephrectomy in the pediatric patient [J]. J Pediatr Urol, 2016, 12(6): 428-429.
[38]
Blanc T, Meignan P, Vinit N, et al. Robotic surgery in pediatric oncology: lessons learned from the first 100 tumors-a nationwide experience [J]. Ann Surg Oncol, 2022, 29(2): 1315-1326.
[39]
Bayne AP, Austin JC, Seideman CA. Robotic assisted retrovesical approach to prostatic utricle excision and other complex pelvic pathology in children is safe and feasible [J]. J Pediatr Urol, 2021, 17(5): 710-715.
[40]
Wiestma AC, Estrada CR Jr, Cho PS, Hollis MV, Yu RN. Robotic-assisted laparoscopic bladder augmentation in the pediatric patient[J]. J Pediatr Urol, 2016, 12(5): 313.e1-313.e2.
[41]
Gundeti MS, Eng MK, Reynolds WS, et al. Pediatric robotic-assisted laparoscopic augmentation ileocystoplasty and Mitrofanoff appendicovesicostomy: complete intracorporeal--initial case report [J]. Urology, 2008, 72(5): 1144-1147.
[1] 张璇, 马宇童, 苗玉倩, 张云, 吴士文, 党晓楚, 陈颖颖, 钟兆明, 王雪娟, 胡淼, 孙岩峰, 马秀珠, 吕发勤, 寇海燕. 超声对Duchenne肌营养不良儿童膈肌功能的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1068-1073.
[2] 张宝富, 俞劲, 叶菁菁, 俞建根, 马晓辉, 刘喜旺. 先天性原发隔异位型肺静脉异位引流的超声心动图诊断[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1074-1080.
[3] 韩丹, 王婷, 肖欢, 朱丽容, 陈镜宇, 唐毅. 超声造影与增强CT对儿童肝脏良恶性病变诊断价值的对比分析[J]. 中华医学超声杂志(电子版), 2023, 20(09): 939-944.
[4] 刘婷婷, 林妍冰, 汪珊, 陈幕荣, 唐子鉴, 代东伶, 夏焙. 超声衰减参数成像评价儿童代谢相关脂肪性肝病的价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 787-794.
[5] 周钰菡, 肖欢, 唐毅, 杨春江, 周娟, 朱丽容, 徐娟, 牟芳婷. 超声对儿童髋关节暂时性滑膜炎的诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 795-800.
[6] 米洁, 陈晨, 李佳玲, 裴海娜, 张恒博, 李飞, 李东杰. 儿童头面部外伤特点分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 511-515.
[7] 朱良振, 于永刚, 陈杲, 廖松柏. 儿童高级别闭合性肾损伤肾动脉栓塞与手术探查的疗效比较[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 461-465,475.
[8] 王蕾, 王少华, 牛海珍, 尹腾飞. 儿童腹股沟疝围手术期风险预警干预[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 768-772.
[9] 李芳, 许瑞, 李洋洋, 石秀全. 循证医学理念在儿童腹股沟疝患者中的应用[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 782-786.
[10] 彭永辉, 张文杰, 李炳根, 聂向阳, 吴凯, 杨六成. 单孔双针疝囊高位结扎术在儿童巨大腹股沟疝的临床应用[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 566-569.
[11] 周顺, 赵素侠, 时静静, 吴双双, 吴圆圆, 李金山. 丙泊酚-舒芬太尼复合七氟烷吸入对小儿腹腔镜疝囊高位结扎术的麻醉效果及安全性[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 603-607.
[12] 吕垒, 冯啸, 何凯明, 曾凯宁, 杨卿, 吕海金, 易慧敏, 易述红, 杨扬, 傅斌生. 改良金氏评分在儿童肝豆状核变性急性肝衰竭肝移植手术时机评估中价值并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 661-668.
[13] 卓少宏, 林秀玲, 周翠梅, 熊卫莲, 马兴灶. CD64指数、SAA/CRP、PCT联合检测在小儿消化道感染性疾病鉴别诊断中的应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 505-509.
[14] 刘笑笑, 张小杉, 刘群, 马岚, 段莎莎, 施依璐, 张敏洁, 王雅晳. 中国学龄前儿童先天性心脏病流行病学研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1021-1024.
[15] 李静, 张玲玲, 邢伟. 兴趣诱导理念用于小儿手术麻醉诱导前的价值及其对家属满意度的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 812-817.
阅读次数
全文


摘要