切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2024, Vol. 18 ›› Issue (05) : 425 -434. doi: 10.3877/cma.j.issn.1674-3253.2024.05.002

专家论坛

衰老相关分泌表型因子在前列腺癌发生发展中的作用机制
胡思平1, 熊性宇1, 徐航2, 杨璐2,()   
  1. 1. 610041 成都,四川大学华西医院泌尿外科;610041 成都,四川大学华西临床医学院
    2. 610041 成都,四川大学华西医院泌尿外科
  • 收稿日期:2024-03-29 出版日期:2024-10-01
  • 通信作者: 杨璐
  • 基金资助:
    四川省科技厅科技创新人才项目(21GJHZ0246)

The mechanisms of senescence-associated secretory phenotype factors in the occurrence and progression of prostate cancer

Siping Hu1, Xingyu Xiong1, Hang Xu2, Lu Yang2,()   

  1. 1. Department of Urology, West China Hospital of Sichuan University, Chengdu 610041, China; West China School of Clinical Medicine of Sichuan University, Chengdu 610041, China
    2. Department of Urology, West China Hospital of Sichuan University, Chengdu 610041, China
  • Received:2024-03-29 Published:2024-10-01
  • Corresponding author: Lu Yang
引用本文:

胡思平, 熊性宇, 徐航, 杨璐. 衰老相关分泌表型因子在前列腺癌发生发展中的作用机制[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 425-434.

Siping Hu, Xingyu Xiong, Hang Xu, Lu Yang. The mechanisms of senescence-associated secretory phenotype factors in the occurrence and progression of prostate cancer[J]. Chinese Journal of Endourology(Electronic Edition), 2024, 18(05): 425-434.

细胞衰老可由应激损伤或生理过程引发,衰老相关分泌表型(SASP)是细胞衰老的重要表现形式。前列腺癌和正常前列腺的SASP因子包括白介素(IL-1、IL-6)、趋化因子(CXCL-8、GRO-a)、基质金属蛋白酶(MMP)家族、TNF-α、细胞间黏附分子-1(ICAM-1)等。P53、IL-1α、KDM4、ATM/HIF1α、ATM /TRAF6、MTORC1均调控了SASP。内分泌治疗、放疗、化疗均可诱导细胞衰老并发生SASP。SASP因子在前列腺癌细胞中的作用目前仍不完全清楚,尽管许多研究显示SASP因子在前列腺癌细胞存活、生长增殖、血管生成、转移、疾病进展、治疗抵抗等方面发挥了重要作用,但现有结果仍有不一致的地方,SASP因子在免疫反应上也同时具有抑制和促进的作用。并且SASP因子在其他恶性肿瘤中显示出了潜在的抑制肿瘤作用。此外,诱导前列腺癌细胞衰老是潜在的抗癌策略,多种分子均可通过诱导前列腺癌细胞衰老发挥肿瘤抑制作用,但研究显示,SASP因子诱导了前列腺正常上皮细胞系(PNT2)永生化前列腺细胞衰老,但未诱导前列腺癌细胞衰老。鉴于SASP因子在前列腺癌中的作用尚不完全清楚,并且现有的SASP因子靶向治疗临床研究仍然不足,未来应进一步加强SASP因子相关研究。

Cell senescence is triggered by stress damage or physiological processes. Senescence-associated secretory phenotype (SASP) is an important manifestation of cell senescence. SASP factors in prostate cancer and normal prostate include interleukins (IL-1, IL-6), chemokines (CXCL-8, GRO-a), matrix metalloproteinase (MMP) family, TNF-α, and intercellular adhesion molecule-1 (ICAM-1). P53, IL-1α, KDM4, ATM/HIF1α, ATM/TRAF6, and MTORC1 all regulate SASP. Endocrine therapy, radiotherapy, and chemotherapy can all induce cell senescence and lead to SASP. The role of SASP factor in prostate cancer cells is still not fully understood. Although many studies have shown that SASP factor plays an important role in prostate cancer cell survival, growth and proliferation, angiogenesis, metastasis, disease progression, and treatment resistance, there are still inconsistencies in existing results. SASP factor also has inhibitory and promoting effects on immune response. And SASP factor has shown potential anti-tumor effects in other malignant tumors. In addition, inducing prostate cancer cell senescence is a potential anti-cancer strategy, and multiple molecules can exert tumor inhibitory effects by inducing prostate cancer cell senescence. However, studies have shown that SASP factor induces PNT2 immortalized prostate cell senescence, but does not induce prostate cancer cell senescence. Given that the role of SASP factors in prostate cancer is not fully understood, and existing clinical research on SASP factor targeted therapy is still insufficient, further research on SASP factor related studies should be strengthened in the future.

[1]
Gorgoulis V, Adams PD, Alimonti A, et al. Cellular senescence: defining a path forward[J]. Cell, 2019, 179(4): 813-827.
[2]
Watson JA, Watson CJ, McCrohan AM, et al. Generation of an epigenetic signature by chronic hypoxia in prostate cells[J]. Hum Mol Genet, 2009, 18(19): 3594-3604.
[3]
Coppé JP, Patil CK, Rodier F, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor[J]. PLoS Biol, 2008, 6(12): 2853-2868.
[4]
Orjalo AV, Bhaumik D, Gengler BK, et al. Cell surface-bound IL-1alpha is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network[J]. Proc Natl Acad Sci U S A, 2009, 106(40): 17031-17036.
[5]
Mourkioti I, Polyzou A, Veroutis D, et al. A GATA2-CDC6 axis modulates androgen receptor blockade-induced senescence in prostate cancer[J]. J Exp Clin Cancer Res, 2023, 42(1): 187.
[6]
Zamagni A, Zanoni M, Cortesi M, et al. Investigating the benefit of combined androgen modulation and hypofractionation in prostate cancer[J]. Int J Mol Sci, 2020, 21(22): 8447.
[7]
Zhang B, Long Q, Wu S, et al. KDM4 orchestrates epigenomic remodeling of senescent cells and potentiates the senescence-associated secretory phenotype[J]. Nat Aging, 2021, 1(5): 454-472.
[8]
Liu H, Xu Q, Wufuer H, et al. Rutin is a potent senomorphic agent to target senescent cells and can improve chemotherapeutic efficacy[J]. Aging Cell, 2024, 23(1): e13921.
[9]
Laberge RM, Sun Y, Orjalo AV, et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation[J]. Nat Cell Biol, 2015, 17(8): 1049-1061.
[10]
Jerde TJ, Bushman W. IL-1 induces IGF-dependent epithelial proliferation in prostate development and reactive hyperplasia[J]. Sci Signal, 2009, 2(86): ra49.
[11]
Fan YC, Lee KD, Tsai YC. Roles of interleukin-1 receptor antagonist in prostate cancer progression[J]. Biomedicines, 2020, 8(12): 602.
[12]
Giri D, Ozen M, Ittmann M. Interleukin-6 is an autocrine growth factor in human prostate cancer[J]. Am J Pathol, 2001, 159(6): 2159-2165.
[13]
Cocchiola R, Rubini E, Altieri F, et al. STAT3 post-translational modifications drive cellular signaling pathways in prostate cancer cells[J]. Int J Mol Sci, 2019, 20(8): 1815.
[14]
Wegiel B, Bjartell A, Culig Z, et al. Interleukin-6 activates PI3K/Akt pathway and regulates cyclin A1 to promote prostate cancer cell survival[J]. Int J Cancer, 2008, 122(7): 1521-1529.
[15]
Singh RK, Lokeshwar BL. The IL-8-regulated chemokine receptor CXCR7 stimulates EGFR signaling to promote prostate cancer growth[J]. Cancer Res, 2011, 71(9): 3268-3277.
[16]
Cavarretta IT, Neuwirt H, Untergasser G, et al. The antiapoptotic effect of IL-6 autocrine loop in a cellular model of advanced prostate cancer is mediated by Mcl-1[J]. Oncogene, 2007, 26(20): 2822-2832.
[17]
Godoy-Tundidor S, Cavarretta ITR, Fuchs D, et al. Interleukin-6 and oncostatin M stimulation of proliferation of prostate cancer 22Rv1 cells through the signaling pathways of p38 mitogen-activated protein kinase and phosphatidylinositol 3-kinase[J]. Prostate, 2005, 64(2): 209-216.
[18]
Santer FR, Malinowska K, Culig Z, et al. Interleukin-6 trans-signalling differentially regulates proliferation, migration, adhesion and maspin expression in human prostate cancer cells[J]. Endocr Relat Cancer, 2010, 17(1): 241-253.
[19]
Lee SO, Chun JY, Nadiminty N, et al. Interleukin-6 undergoes transition from growth inhibitor associated with neuroendocrine differentiation to stimulator accompanied by androgen receptor activation during LNCaP prostate cancer cell progression[J]. Prostate, 2007, 67(7): 764-773.
[20]
Nowak DG, Cho H, Herzka T, et al. MYC Drives Pten/Trp53-Deficient Proliferation and Metastasis due to IL6 Secretion and AKT Suppression via PHLPP2[J]. Cancer Discov, 2015, 5(6): 636-651.
[21]
Teslow EA, Bao B, Dyson G, et al. Exogenous IL-6 induces mRNA splice variant MBD2_v2 to promote stemness in TP53 wild-type, African American PCa cells[J]. Mol Oncol, 2018, 12(7): 1138-1152.
[22]
Huang S, Liu Q, Liao Q, et al. Interleukin-6/signal transducer and activator of transcription 3 promotes prostate cancer resistance to androgen deprivation therapy via regulating pituitary tumor transforming gene 1 expression[J]. Cancer Sci, 2018, 109(3): 678-687.
[23]
Wilson C, Purcell C, Seaton A, et al. Chemotherapy-induced CXC-chemokine/CXC-chemokine receptor signaling in metastatic prostate cancer cells confers resistance to oxaliplatin through potentiation of nuclear factor-kappaB transcription and evasion of apoptosis[J]. J Pharmacol Exp Ther, 2008, 327(3): 746-759.
[24]
Singh RK, Lokeshwar BL. Depletion of intrinsic expression of Interleukin-8 in prostate cancer cells causes cell cycle arrest, spontaneous apoptosis and increases the efficacy of chemotherapeutic drugs[J]. Mol Cancer, 2009, 8: 57.
[25]
Sun Y, Ai JZ, Jin X, et al. IL-8 protects prostate cancer cells from GSK-3β-induced oxidative stress by activating the mTOR signaling pathway[J]. Prostate, 2019, 79(10): 1180-1190.
[26]
Lee LF, Louie MC, Desai SJ, et al. Interleukin-8 confers androgen-independent growth and migration of LNCaP: differential effects of tyrosine kinases Src and FAK[J]. Oncogene, 2004, 23(12): 2197-2205.
[27]
Zheng T, Ma G, Tang M, et al. IL-8 secreted from M2 macrophages promoted prostate tumorigenesis via STAT3/MALAT1 pathway[J]. Int J Mol Sci, 2018, 20(1): 98.
[28]
Seaton A, Scullin P, Maxwell PJ, et al. Interleukin-8 signaling promotes androgen-independent proliferation of prostate cancer cells via induction of androgen receptor expression and activation[J]. Carcinogenesis, 2008, 29(6): 1148-1156.
[29]
Araki S, Omori Y, Lyn D, et al. Interleukin-8 is a molecular determinant of androgen independence and progression in prostate cancer[J]. Cancer Res, 2007, 67(14): 6854-6862.
[30]
Maynard JP, Ertunc O, Kulac I, et al. IL8 expression is associated with prostate cancer aggressiveness and androgen receptor loss in primary and metastatic prostate cancer[J]. Mol Cancer Res, 2020, 18(1): 153-165.
[31]
Thomas MU, Messex JK, Dang T, et al. Macrophages expedite cell proliferation of prostate intraepithelial neoplasia through their downstream target ERK[J]. FEBS J, 2021, 288(6): 1871-1886.
[32]
Benelli R, Stigliani S, Minghelli S, et al. Impact of CXCL1 overexpression on growth and invasion of prostate cancer cell[J]. Prostate, 2013, 73(9): 941-951.
[33]
Chopra DP, Menard RE, Januszewski J, et al. TNF-alpha-mediated apoptosis in normal human prostate epithelial cells and tumor cell lines[J]. Cancer Lett, 2004, 203(2): 145-154.
[34]
Shukla S, Gupta S. Suppression of constitutive and tumor necrosis factor alpha-induced nuclear factor (NF)-kappaB activation and induction of apoptosis by apigenin in human prostate carcinoma PC-3 cells: correlation with down-regulation of NF-kappaB-responsive genes[J]. Clin Cancer Res, 2004, 10(9): 3169-3178.
[35]
Schröder SK, Asimakopoulou A, Tillmann S, et al. TNF-α controls Lipocalin-2 expression in PC-3 prostate cancer cells[J]. Cytokine, 2020, 135: 155214.
[36]
Mizokami A, Gotoh A, Yamada H, et al. Tumor necrosis factor-alpha represses androgen sensitivity in the LNCaP prostate cancer cell line[J]. J Urol, 2000, 164(3 Pt 1): 800-805.
[37]
Larsson P, Khaja ASS, Semenas J, et al. The functional interlink between AR and MMP9/VEGF signaling axis is mediated through PIP5K1α/pAKT in prostate cancer[J]. Int J Cancer, 2020, 146(6): 1686-1699.
[38]
Ren Z, Kang W, Wang L, et al. E2F1 renders prostate cancer cell resistant to ICAM-1 mediated antitumor immunity by NF-κB modulation[J]. Mol Cancer, 2014, 13: 84.
[39]
Kwon SJ, Lee GT, Lee JH, et al. Mechanism of pro-tumorigenic effect of BMP-6: neovascularization involving tumor-associated macrophages and IL-1a[J]. Prostate, 2014, 74(2): 121-133.
[40]
Ishii K, Sasaki T, Iguchi K, et al. Interleukin-6 induces VEGF secretion from prostate cancer cells in a manner independent of androgen receptor activation[J]. Prostate, 2018, 78(11): 849-856.
[41]
Maxwell PJ, Coulter J, Walker SM, et al. Potentiation of inflammatory CXCL8 signalling sustains cell survival in PTEN-deficient prostate carcinoma[J]. Eur Urol, 2013, 64(2): 177-188.
[42]
Liu Q, Russell MR, Shahriari K, et al. Interleukin-1β promotes skeletal colonization and progression of metastatic prostate cancer cells with neuroendocrine features[J]. Cancer Res, 2013, 73(11): 3297-3305.
[43]
Herroon MK, Diedrich JD, Rajagurubandara E, et al. Prostate tumor cell-derived IL1β induces an inflammatory phenotype in bone marrow adipocytes and reduces sensitivity to docetaxel via lipolysis-dependent mechanisms[J]. Mol Cancer Res, 2019, 17(12): 2508-2521.
[44]
Gu L, Talati P, Vogiatzi P, et al. Pharmacologic suppression of JAK1/2 by JAK1/2 inhibitor AZD1480 potently inhibits IL-6-induced experimental prostate cancer metastases formation[J]. Mol Cancer Ther, 2014, 13(5): 1246-1258.
[45]
Wu CT, Huang YC, Chen WC, et al. Effect of tumor burden on tumor aggressiveness and immune modulation in prostate cancer: association with IL-6 signaling[J]. Cancers, 2019, 11(7): 992.
[46]
Lu Y, Cai Z, Xiao G, et al. Monocyte chemotactic protein-1 mediates prostate cancer-induced bone resorption[J]. Cancer Res, 2007, 67(8): 3646-3653.
[47]
Dahal S, Chaudhary P, Jung YS, et al. Megakaryocyte-derived IL-8 acts as a paracrine factor for prostate cancer aggressiveness through CXCR2 activation and antagonistic AR downregulation[J]. Biomol Ther, 2023, 31(2): 210-218.
[48]
Xu D, McKee CM, Cao Y, et al. Matrix metalloproteinase-9 regulates tumor cell invasion through cleavage of protease nexin-1[J]. Cancer Res, 2010, 70(17): 6988-6998.
[49]
Korbecki J, Bosiacki M, Barczak K, et al. Involvement in tumorigenesis and clinical significance of CXCL1 in reproductive cancers: breast cancer, cervical cancer, endometrial cancer, ovarian cancer and prostate cancer[J]. Int J Mol Sci, 2023, 24(8): 7262.
[50]
Lu Y, Dong B, Xu F, et al. CXCL1-LCN2 paracrine axis promotes progression of prostate cancer via the Src activation and epithelial-mesenchymal transition[J]. Cell Commun Signal, 2019, 17(1): 118.
[51]
Kuo PL, Shen KH, Hung SH, et al. CXCL1/GROα increases cell migration and invasion of prostate cancer by decreasing fibulin-1 expression through NF-κB/HDAC1 epigenetic regulation[J]. Carcinogenesis, 2012, 33(12): 2477-2487.
[52]
Zeng ZZ, Jia Y, Hahn NJ, et al. Role of focal adhesion kinase and phosphatidylinositol 3'-kinase in integrin fibronectin receptor-mediated, matrix metalloproteinase-1-dependent invasion by metastatic prostate cancer cells[J]. Cancer Res, 2006, 66(16): 8091-8099.
[53]
Qu H, Zou Z, Pan Z, et al. IL-7/IL-7 receptor axis stimulates prostate cancer cell invasion and migration via AKT/NF-κB pathway[J]. Int Immunopharmacol, 2016, 40: 203-210.
[54]
Tellman TV, Cruz LA, Grindel BJ, et al. Cleavage of the perlecan-semaphorin 3A-plexin A1-neuropilin-1 (PSPN) complex by matrix metalloproteinase 7/matrilysin triggers prostate cancer cell dyscohesion and migration[J]. Int J Mol Sci, 2021, 22(6): 3218.
[55]
Li W, Xu J, Cheng L, et al. RelB promotes the migration and invasion of prostate cancer DU145 cells via exosomal ICAM1 in vitro[J]. Cell Signal, 2022, 91: 110221.
[56]
Radhakrishnan P, Chachadi V, Lin MF, et al. TNFα enhances the motility and invasiveness of prostatic cancer cells by stimulating the expression of selective glycosyl- and sulfotransferase genes involved in the synthesis of selectin ligands[J]. Biochem Biophys Res Commun, 2011, 409(3): 436-441.
[57]
Wang M, Liu X, Chen Z, et al. Metformin suppressed tumor necrosis factor-α-induced epithelial-mesenchymal transition in prostate cancer by inactivating the NF-κB signaling pathway[J]. Transl Cancer Res, 2020, 9(10): 6086-6095.
[58]
Abdul M, Hoosein N. Differences in the expression and effects of interleukin-1 and-2 on androgen-sensitive and-insensitive human prostate cancer cell lines[J]. Cancer Lett, 2000, 149(1/2): 37-42.
[59]
Thomas-Jardin SE, Kanchwala MS, Jacob J, et al. Identification of an IL-1-induced gene expression pattern in AR+ PCa cells that mimics the molecular phenotype of AR- PCa cells[J]. Prostate, 2018, 78(8): 595-606.
[60]
Thomas-Jardin SE, Dahl H, Kanchwala MS, et al. RELA is sufficient to mediate interleukin-1 repression of androgen receptor expression and activity in an LNCaP disease progression model[J]. Prostate, 2020, 80(2): 133-145.
[61]
DiNatale A, Worrede A, Iqbal W, et al. IL-1β expression driven by androgen receptor absence or inactivation promotes prostate cancer bone metastasis[J]. Cancer Res Commun, 2022, 2(12): 1545-1557.
[62]
Tran LL, Dang T, Thomas R, et al. ELF3 mediates IL-1α induced differentiation of mesenchymal stem cells to inflammatory iCAFs[J]. Stem Cells, 2021, 39(12): 1766-1777.
[63]
Sass SN, Ramsey KD, Egan SM, et al. Tumor-associated myeloid cells promote tumorigenesis of non-tumorigenic human and murine prostatic epithelial cell lines[J]. Cancer Immunol Immunother, 2018, 67(6): 873-883.
[64]
Delk NA, Farach-Carson MC. Interleukin-6: a bone marrow stromal cell paracrine signal that induces neuroendocrine differentiation and modulates autophagy in bone metastatic PCa cells[J]. Autophagy, 2012, 8(4): 650-663.
[65]
Lee GT, Kwon SJ, Lee JH, et al. Macrophages induce neuroendocrine differentiation of prostate cancer cells via BMP6-IL6 Loop[J]. Prostate, 2011, 71(14): 1525-1537.
[66]
Lin LC, Gao AC, Lai CH, et al. Induction of neuroendocrine differentiation in castration resistant prostate cancer cells by adipocyte differentiation-related protein (ADRP) delivered by exosomes[J]. Cancer Lett, 2017, 391: 74-82.
[67]
Weaver EM, Zamora FJ, Hearne JL, et al. Posttranscriptional regulation of T-type Ca(2+) channel expression by interleukin-6 in prostate cancer cells[J]. Cytokine, 2015, 76(2): 309-320.
[68]
Yang L, Wang L, Lin HK, et al. Interleukin-6 differentially regulates androgen receptor transactivation via PI3K-Akt, STAT3, and MAPK, three distinct signal pathways in prostate cancer cells[J]. Biochem Biophys Res Commun, 2003, 305(3): 462-469.
[69]
Natani S, Dhople VM, Parveen A, et al. AMPK/SIRT1 signaling through p38MAPK mediates Interleukin-6 induced neuroendocrine differentiation of LNCaP prostate cancer cells[J]. Biochim Biophys Acta Mol Cell Res, 2021, 1868(10): 119085.
[70]
Huang J, Yao JL, Zhang L, et al. Differential expression of interleukin-8 and its receptors in the neuroendocrine and non-neuroendocrine compartments of prostate cancer[J]. Am J Pathol, 2005, 166(6): 1807-1815.
[71]
Chen H, Sun Y, Wu C, et al. Pathogenesis of prostatic small cell carcinoma involves the inactivation of the P53 pathway[J]. Endocr Relat Cancer, 2012, 19(3): 321-331.
[72]
Peng G, Wang C, Wang H, et al. Gankyrin-mediated interaction between cancer cells and tumor-associated macrophages facilitates prostate cancer progression and androgen deprivation therapy resistance[J]. Oncoimmunology, 2023, 12(1): 2173422.
[73]
Wu CT, Huang YC, Chen WC, et al. Effect of 1α, 25-dihydroxyvitamin D3 on the radiation response in prostate cancer: association with IL-6 signaling[J]. Front Oncol, 2021, 11: 619365.
[74]
Cheteh EH, Sarne V, Ceder S, et al. Interleukin-6 derived from cancer-associated fibroblasts attenuates the p53 response to doxorubicin in prostate cancer cells[J]. Cell Death Discov, 2020, 6: 42.
[75]
Yang F, Yuan C, Wu D, et al. IRE1α expedites the progression of castration-resistant prostate cancers via the positive feedback loop of IRE1α/IL-6/AR[J]. Front Oncol, 2021, 11: 671141.
[76]
Feng S, Tang Q, Sun M, et al. Interleukin-6 increases prostate cancer cells resistance to bicalutamide via TIF2[J]. Mol Cancer Ther, 2009, 8(3): 665-671.
[77]
Maxwell PJ, McKechnie M, Armstrong CW, et al. Attenuating adaptive VEGF-A and IL8 signaling restores durable tumor control in AR antagonist-treated prostate cancers[J]. Mol Cancer Res, 2022, 20(6): 841-853.
[78]
Xia J, Zhang J, Wang L, et al. Non-apoptotic function of caspase-8 confers prostate cancer enzalutamide resistance via NF-κB activation[J]. Cell Death Dis, 2021, 12(9): 833.
[79]
Sasaki T, Yoshikawa Y, Kageyama T, et al. Prostate fibroblasts enhance androgen receptor splice variant 7 expression in prostate cancer cells[J]. Prostate, 2023, 83(4): 364-375.
[80]
Lopez-Bujanda ZA, Haffner MC, Chaimowitz MG, et al. Castration-mediated IL-8 promotes myeloid infiltration and prostate cancer progression[J]. Nat Cancer, 2021, 2(8): 803-818.
[81]
Wang X, Xu F, Kou H, et al. Stromal cell-derived small extracellular vesicles enhance radioresistance of prostate cancer cells via interleukin-8-induced autophagy[J]. J Extracel Vesicles, 2023, 12(7): e12342.
[82]
Prata LGPL, Ovsyannikova IG, Tchkonia T, et al. Senescent cell clearance by the immune system: emerging therapeutic opportunities[J]. Semin Immunol, 2018, 40: 101275.
[83]
Sturmlechner I, Zhang C, Sine CC, et al. p21 produces a bioactive secretome that places stressed cells under immunosurveillance[J]. Science, 2021, 374(6567): eabb3420.
[84]
Wang C, Zhang Y, Gao WQ. The evolving role of immune cells in prostate cancer[J]. Cancer Lett, 2022, 525: 9-21.
[85]
Michelini S, Sarajlic M, Duschl A, et al. IL-1β induces expression of costimulatory molecules and cytokines but not immune feedback regulators in dendritic cells[J]. Hum Immunol, 2018, 79(8): 610-615.
[86]
Maliszewski CR, Sato TA, Vanden Bos T, et al. Cytokine receptors and B cell functions. I. Recombinant soluble receptors specifically inhibit IL-1- and IL-4-induced B cell activities in vitro[J]. J Immunol, 1990, 144(8): 3028-3033.
[87]
Wang JG, Williams JC, Davis BK, et al. Monocytic microparticles activate endothelial cells in an IL-1β-dependent manner[J]. Blood, 2011, 118(8): 2366-2374.
[88]
Wang D, Cheng C, Chen X, et al. IL-1β is an androgen-responsive target in macrophages for immunotherapy of prostate cancer[J]. Adv Sci, 2023, 10(17): e2206889.
[89]
McLoughlin RM, Jenkins BJ, Grail D, et al. IL-6 trans-signaling via STAT3 directs T cell infiltration in acute inflammation[J]. Proc Natl Acad Sci U S A, 2005, 102(27): 9589-9594.
[90]
Dienz O, Rincon M. The effects of IL-6 on CD4 T cell responses[J]. Clin Immunol, 2009, 130(1): 27-33.
[91]
Levy Y, Fermand JP, Brouet JC. Differential effects of low and high concentrations of interleukin 6 on human B cells[J]. Eur J Immunol, 1990, 20(11): 2389-2393.
[92]
Dienz O, Eaton SM, Bond JP, et al. The induction of antibody production by IL-6 is indirectly mediated by IL-21 produced by CD4+ T cells[J]. J Exp Med, 2009, 206(1): 69-78.
[93]
Han IH, Song HO, Ryu JS. IL-6 produced by prostate epithelial cells stimulated with Trichomonas vaginalispromotes proliferation of prostate cancer cells by inducing M2 polarization of THP-1-derived macrophages[J]. PLoS Negl Trop Dis, 2020, 14(3): e0008126.
[94]
Kim JJ, Nottingham LK, Sin JI, et al. CD8 positive T cells influence antigen-specific immune responses through the expression of chemokines[J]. J Clin Invest, 1998, 102(6): 1112-1124.
[95]
Kehrl JH, Miller A, Fauci AS. Effect of tumor necrosis factor alpha on mitogen-activated human B cells[J]. J Exp Med, 1987, 166(3): 786-791.
[96]
Rieckmann P, Tuscano JM, Kehrl JH. Tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) in B-lymphocyte function[J]. Methods, 1997, 11(1): 128-132.
[97]
Lee J, Lee SH, Shin N, et al. Tumor necrosis factor-alpha enhances IL-15-induced natural killer cell differentiation[J]. Biochem Biophys Res Commun, 2009, 386(4): 718-723.
[98]
Almishri W, Santodomingo-Garzon T, Le T, et al. TNFα augments cytokine-induced NK cell IFNγ production through TNFR2[J]. J Innate Immun, 2016, 8(6): 617-629.
[99]
Kratochvill F, Neale G, Haverkamp JM, et al. TNF counterbalances the emergence of M2 tumor macrophages[J]. Cell Rep, 2015, 12(11): 1902-1914.
[100]
Weber R, Groth C, Lasser S, et al. IL-6 as a major regulator of MDSC activity and possible target for cancer immunotherapy[J]. Cell Immunol, 2021, 359: 104254.
[101]
Alfaro C, Teijeira A, Oñate C, et al. Tumor-produced interleukin-8 attracts human myeloid-derived suppressor cells and elicits extrusion of neutrophil extracellular traps (NETs)[J]. Clin Cancer Res, 2016, 22(15): 3924-3936.
[102]
Shi H, Han X, Sun Y, et al. Chemokine (C-X-C motif) ligand 1 and CXCL2 produced by tumor promote the generation of monocytic myeloid-derived suppressor cells[J]. Cancer Sci, 2018, 109(12): 3826-3839.
[103]
Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria[J]. Science, 2004, 303(5663): 1532-1535.
[104]
Cools-Lartigue J, Spicer J, McDonald B, et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis[J]. J Clin Invest, 2013, 123(8): 3446-3458.
[105]
Teijeira á, Garasa S, Gato M, et al. CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity[J]. Immunity, 2020, 52(5): 856-871.e8.
[106]
Liu Y, Liu L. The pro-tumor effect and the anti-tumor effect of neutrophils extracellular traps[J]. Biosci Trends, 2020, 13(6): 469-475.
[107]
Feijoó E, Alfaro C, Mazzolini G, et al. Dendritic cells delivered inside human carcinomas are sequestered by interleukin-8[J]. Int J Cancer, 2005, 116(2): 275-281.
[108]
Shahriari K, Shen F, Worrede-Mahdi A, et al. Cooperation among heterogeneous prostate cancer cells in the bone metastatic niche[J]. Oncogene, 2017, 36(20): 2846-2856.
[109]
Chen Y, Li R, Shang S, et al. Therapeutic potential of TNFα and IL1β blockade for CRS/ICANS in CAR-T therapy via ameliorating endothelial activation[J]. Front Immunol, 2021, 12: 623610.
[110]
Karkera J, Steiner H, Li W, et al. The anti-interleukin-6 antibody siltuximab down-regulates genes implicated in tumorigenesis in prostate cancer patients from a phase I study[J]. Prostate, 2011, 71(13): 1455-1465.
[111]
Fizazi K, de Bono JS, Flechon A, et al. Randomised phase II study of siltuximab (CNTO 328), an anti-IL-6 monoclonal antibody, in combination with mitoxantrone/prednisone versus mitoxantrone/prednisone alone in metastatic castration-resistant prostate cancer[J]. Eur J Cancer, 2012, 48(1): 85-93.
[112]
Jiang Z, Liao R, Lv J, et al. IL-6 trans-signaling promotes the expansion and anti-tumor activity of CAR T cells[J]. Leukemia, 2021, 35(5): 1380-1391.
[113]
Bilusic M, Heery CR, Collins JM, et al. Phase I trial of HuMax-IL8 (BMS-986253), an anti-IL-8 monoclonal antibody, in patients with metastatic or unresectable solid tumors[J]. J Immunother Cancer, 2019, 7(1): 240.
[114]
Di Mitri D, Mirenda M, Vasilevska J, et al. Re-education of tumor-associated macrophages by CXCR2 blockade drives senescence and tumor inhibition in advanced prostate cancer[J]. Cell Rep, 2019, 28(8): 2156-2168.e5.
[115]
Guo C, Sharp A, Gurel B, et al. Targeting myeloid chemotaxis to reverse prostate cancer therapy resistance[J]. Nature, 2023, 623(7989): 1053-1061.
[116]
Jin L, Tao H, Karachi A, et al. CXCR1- or CXCR2-modified CAR T cells co-opt IL-8 for maximal antitumor efficacy in solid tumors[J]. Nat Commun, 2019, 10(1): 4016.
[117]
Méndez-Clemente A, Bravo-Cuellar A, González-Ochoa S, et al. Dual STAT-3 and IL-6R inhibition with stattic and tocilizumab decreases migration, invasion and proliferation of prostate cancer cells by targeting the IL-6/IL-6R/STAT-3 axis[J]. Oncol Rep, 2022, 48(2): 138.
[118]
González-Ochoa S, Tellez-Bañuelos MC, Méndez-Clemente AS, et al. Combination blockade of the IL6R/STAT-3 axis with TIGIT and its impact on the functional activity of NK cells against prostate cancer cells[J]. J Immunol Res, 2022, 2022: 1810804.
[119]
Witt K, Evans-Axelsson S, Lundqvist A, et al. Inhibition of STAT3 augments antitumor efficacy of anti-CTLA-4 treatment against prostate cancer[J]. Cancer Immunol Immunother, 2021, 70(11): 3155-3166.
[120]
Chien Y, Scuoppo C, Wang X, et al. Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity[J]. Genes Dev, 2011, 25(20): 2125-2136.
[121]
Liu Y, Hawkins OE, Su Y, et al. Targeting aurora kinases limits tumour growth through DNA damage-mediated senescence and blockade of NF-κB impairs this drug-induced senescence[J]. EMBO Mol Med, 2013, 5(1): 149-166.
[122]
Wang Z, Li Y, Wu D, et al. Nuclear receptor HNF4α performs a tumor suppressor function in prostate cancer via its induction of p21-driven cellular senescence[J]. Oncogene, 2020, 39(7): 1572-1589.
[123]
Ramalho-Carvalho J, Graça I, Gomez A, et al. Downregulation of miR-130b~301b cluster is mediated by aberrant promoter methylation and impairs cellular senescence in prostate cancer[J]. J Hematol Oncol, 2017, 10(1): 43.
[124]
Paul PJ, Raghu D, Chan AL, et al. Restoration of tumor suppression in prostate cancer by targeting the E3 ligase E6AP[J]. Oncogene, 2016, 35(48): 6235-6245.
[125]
Alessio N, Aprile D, Squillaro T, et al. The senescence-associated secretory phenotype (SASP) from mesenchymal stromal cells impairs growth of immortalized prostate cells but has no effect on metastatic prostatic cancer cells[J]. Aging, 2019, 11(15): 5817-5828.
[1] 孙鸿坤, 艾虹, 陈正. 内质网应激介导的牙周炎骨改建失衡的研究进展[J]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 211-218.
[2] 黄福, 王黔, 金相任, 唐云川. VEGFR2、miR-27a-5p在胃癌组织中的表达与临床病理参数及预后的关系研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 558-561.
[3] 蔡大明, 陆晓峰, 王行舟, 王萌, 刘颂, 夏雪峰, 沈晓菲, 杜峻峰, 管文贤. 三级淋巴结构在胃神经内分泌瘤中的预后价值及预后预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 401-405.
[4] 李勇, 彭天明, 王倩倩, 陈育纯, 蒲小勇, 刘久敏. 基于失巢凋亡相关基因的膀胱癌预后模型构建及分析[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 331-339.
[5] 刘中文, 刘畅, 高洋, 刘东, 林世庆, 杨建华, 赵福义. 尿液microRNA-326与腹腔镜根治性膀胱切除术治疗膀胱癌患者预后的相关性研究[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 386-391.
[6] 陈钊, 钟克力, 江志鹏, 傅宇翔, 范宝航, 吴文飞. 前列腺癌术后腹股沟疝的发生率及危险因素分析[J]. 中华疝和腹壁外科杂志(电子版), 2024, 18(04): 396-401.
[7] 季加翠, 孙春斌, 罗恩丽. 姜黄素通过调节NF-κB/NLRP3通路减轻LPS诱导小胶质细胞神经炎症损伤[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 193-203.
[8] 曾聿理, 雷发容, 肖慧, 邱德亮, 谢静, 吴寻. 氯普鲁卡因通过调控circRNA-ZKSCAN1表达抑制肝癌Huh-7细胞体外生长和转移的研究[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 220-228.
[9] 李彦浇, 梁雷, 金钫, 王智伟. 银杏内酯B通过调控miR-24-3p对人牙周膜干细胞增殖、成骨分化的影响[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 229-235.
[10] 翁桂湖, 刘悦泽, 张太平. 胰腺神经内分泌肿瘤治疗进展与争议[J]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 602-606.
[11] 王妍, 李征, 卓奇峰, 周陈杰, 吉顺荣, 徐晓武, 陈洁, 虞先濬. 微小无功能性胰腺神经内分泌瘤外科治疗进展[J]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 607-614.
[12] 邓小巍, 邵成浩. 胰腺神经内分泌肿瘤转化治疗进展[J]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 456-460.
[13] 李永政, 孟煜凡, 樊知遥, 展翰翔. 胰腺神经内分泌肿瘤新辅助治疗研究进展[J]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 481-486.
[14] 崔精, 鲍一帆, 沈晓明, 杨增辉, 高森, 鲍传庆. 结直肠癌中circMFSD12对肿瘤细胞功能及5-FU敏感性的调控[J]. 中华结直肠疾病电子杂志, 2024, 13(04): 294-302.
[15] 靳英, 付小霞, 陈美茹, 袁璐, 郝力瑶. CD147调控MAPK信号通路对结肠癌细胞增殖和凋亡的影响及机制研究[J]. 中华临床医师杂志(电子版), 2024, 18(05): 474-480.
阅读次数
全文


摘要