切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2025, Vol. 19 ›› Issue (02) : 140 -145. doi: 10.3877/cma.j.issn.1674-3253.2025.02.003

专家论坛

外泌体在前列腺癌细胞免疫逃逸中的研究进展
刘咏博1, 郭佳1,()   
  1. 1. 430060 湖北,武汉大学人民医院泌尿外科
  • 收稿日期:2024-03-05 出版日期:2025-04-01
  • 通信作者: 郭佳
  • 基金资助:
    湖北省自然科学基金面上项目(2023AFB745)

The research progress of exosomes in the immune escape of prostate cancer cell

Yongbo Liu1, Jia Guo1,()   

  1. 1. Department of Urology,Wuhan University People's Hospital,Wuhan 430060,China
  • Received:2024-03-05 Published:2025-04-01
  • Corresponding author: Jia Guo
引用本文:

刘咏博, 郭佳. 外泌体在前列腺癌细胞免疫逃逸中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 140-145.

Yongbo Liu, Jia Guo. The research progress of exosomes in the immune escape of prostate cancer cell[J/OL]. Chinese Journal of Endourology(Electronic Edition), 2025, 19(02): 140-145.

外泌体最早于1983 年被发现,在20 世纪90 年代,外泌体被认为是细胞用来排泄废物的一种机制。近年来的研究表明,外泌体内携带有复杂的成分,包括蛋白质、核酸、脂质以及其他代谢物。外泌体将这些复杂的成分运输到邻近或远处的细胞,参与细胞间的物质交换和细胞通讯过程,调节细胞稳态、免疫反应和衰老等基本生理过程。几乎所有的细胞都会分泌外泌体,因此外泌体也是恶性肿瘤细胞肿瘤微环境的组成成分,在肿瘤的发生发展、转移、免疫反应及治疗中发挥着重要的作用。前列腺癌是男性泌尿生殖系统最常见的恶性肿瘤之一,外泌体通过其内容物,发挥细胞间物质交换以及信号传递的功能,介导前列腺癌细胞的免疫逃逸过程,促进前列腺癌的发生发展以及转移。本文就外泌体在前列腺癌细胞免疫逃逸中的最新研究进展进行论述。

Exosome was first discovered in 1983,it was thought to be a mechanism used by cells to excrete waste in the 1990s.Recent studies have shown that exosomes carry complex components,including proteins,nucleic acids,lipids and other metabolites.Exosomes transport these complex components to nearby or distant cells,participate in cell-to-cell substance exchange and cell communication,and regulate cell homeostasis,immune response and aging.Almost all cells secrete exosomes,so exosomes are also components of the tumor microenvironment,and play an important role in tumor development,metastasis,immune response and therapy.Prostate cancer is one of the most common malignant tumors in male genitourinary system.Exosomes play the role of substance exchange and signal transmission between cells through their contents,which mediates the immune escape process of prostate cancer cells,promotes the development and metastasis of prostate cancer.This article reviews the recent research progress of exosomes in immune escape of prostate cancer cell.

[1]
NoHánělová K,Raudenská M,Masařík M,et al.Protein cargo in extracellular vesicles as the key mediator in the progression of cancer[J].Cell Commun Signal,2024,22(1): 25.DOI: 10.1186/s12964-023-01408-6.
[2]
Kalluri R,LeBleu VS.The biology,function,and biomedical applications of exosomes[J].Science,2020,367(6478): eaau6977.DOI: 10.1126/science.aau6977.
[3]
Miron RJ,Zhang Y.Understanding exosomes: part 1-characterization,quantification and isolation techniques[J].Periodontol 2000,2024,94(1): 231-256.DOI: 10.1111/prd.12520.
[4]
de la Torre Gomez C,Goreham RV,Bech Serra JJ,et al.“Exosomics”-a review of biophysics,biology and biochemistry of exosomes with a focus on human breast milk[J].Front Genet,2018,9: 92.DOI:10.3389/fgene.2018.00092.
[5]
Mathieu M,Martin-Jaular L,Lavieu G,et al.Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication[J].Nat Cell Biol,2019,21(1): 9-17.DOI:10.1038/s41556-018-0250-9.
[6]
Zhou B,Xu K,Zheng X,et al.Application of exosomes as liquid biopsy in clinical diagnosis[J].Signal Transduct Target Ther,2020,5(1): 144.DOI: 10.1038/s41392-020-00258-9.
[7]
Wang Y,Xiao T,Zhao C,et al.The regulation of exosome generation and function in physiological and pathological processes[J].Int J Mol Sci,2023,25(1): 255.DOI: 10.3390/ijms25010255.
[8]
Mortezaee K,Majidpoor J.The impact of hypoxia on extracellular vesicle secretome profile of cancer[J].Med Oncol,2023,40(5): 128.DOI: 10.1007/s12032-023-01995-x.
[9]
Liu Y,Shi K,Chen Y,et al.Exosomes and their role in cancer progression[J].Front Oncol,2021,11: 639159.DOI: 10.3389/fonc.2021.639159.
[10]
Chu X,Yang Y,Tian X.Crosstalk between pancreatic cancer cells and cancer-associated fibroblasts in the tumor microenvironment mediated by exosomal microRNAs[J].Int J Mol Sci,2022,23(17):9512.Doi: 10.3390/ijms23179512.
[11]
Han C,Zhang C,Wang H,et al.Exosome-mediated communication between tumor cells and tumor-associated macrophages: implications for tumor microenvironment[J].Oncoimmunology,2021,10(1):1887552.DOI: 10.1080/2162402X.2021.1887552.
[12]
国家癌症中心,国家肿瘤质控中心前列腺癌质控专家委员会.中国前列腺癌规范诊疗质量控制指标(2022 版)[J].中华肿瘤杂志,2022,44(10): 1011-1016.DOI: 10.3760/cma.j.cn112152-20220803-00530.National Cancer Center,Prostate Cancer Expert Committee of National Cancer Quality Control Center.Quality control indicators of standardized diagnosis and treatment of prostate cancer in China(2022 edition)[J].Chin J Oncol,2022,44(10): 1011-1016.DOI:10.3760/cma.j.cn112152-20220803-00530.
[13]
Wang G,Zhao D,Spring DJ,et al.Genetics and biology of prostate cancer[J].Genes Dev,2018,32(17-18): 1105-1140.DOI: 10.1101/gad.315739.118.
[14]
Gong J,Chehrazi-Raffle A,Reddi S,et al.Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy:a comprehensive review of registration trials and future considerations[J].J Immunother Cancer,2018,6(1): 8.DOI: 10.1186/s40425-018-0316-z.
[15]
王超雄,郑培宣,赵允.病理激活的中性粒细胞上表达的CD300ld 参与肿瘤免疫抑制[J].中国细胞生物学学报,2023,45(11): 1593-1597.DOI: 10.11844/cjcb.2023.11.0001.Wang CX,Zheng PX,Zhao Y.The CD300ld receptor on pathologically activated neutrophils is required for tumor-driven immune suppression[J].Chin J Cell Biol,2023,45(11): 1593-1597.DOI: 10.11844/cjcb.2023.11.0001.
[16]
Elia AR,Caputo S,Bellone M.Immune checkpoint-mediated interactions between cancer and immune cells in prostate adenocarcinoma and melanoma[J].Front Immunol,2018,9: 1786.DOI: 10.3389/fimmu.2018.01786.
[17]
Silva JAF,Calmasini F,Siqueira-Berti A,et al.Prostate immunology:a challenging puzzle[J].J Reprod Immunol,2020,142: 103190.DOI:10.1016/j.jri.2020.103190.
[18]
Qin S,Cao J,Ma X.Function and clinical application of exosomehow to improve tumor immunotherapy?[J].Front Cell Dev Biol,2023,11: 1228624.DOI: 10.3389/fcell.2023.1228624.
[19]
Cui X,Fu Q,Wang X,et al.Molecular mechanisms and clinical applications of exosomes in prostate cancer[J].Biomark Res,2022,10(1):56.DOI: 10.1186/s40364-022-00398-w.
[20]
Klibi J,Niki T,Riedel A,et al.Blood diffusion and Th1-suppressive effects of galectin-9-containing exosomes released by Epstein-Barr virus-infected nasopharyngeal carcinoma cells[J].Blood,2009,113(9): 1957-1966.DOI: 10.1182/blood-2008-02-142596.
[21]
Paskeh MDA,Entezari M,Mirzaei S,et al.Emerging role of exosomes in cancer progression and tumor microenvironment remodeling[J].J Hematol Oncol,2022,15(1):83.DOI: 10.1186/s13045-022-01305-4.
[22]
Lundholm M,Schröder M,Nagaeva O,et al.Prostate tumor-derived exosomes down-regulate NKG2D expression on natural killer cells and CD8+ T cells: mechanism of immune evasion[J].PLoS One,2014,9(9): e108925.DOI: 10.1371/journal.pone.0108925.
[23]
Li N,Wang Y,Xu H,et al.Exosomes derived from RM-1 cells promote the recruitment of MDSCs into tumor microenvironment by upregulating CXCR4 via TLR2/NF-κ B pathway[J].J Oncol,2021,2021: 5584406.DOI: 10.1155/2021/5584406.
[24]
Luo JQ,Yang TW,Wu J,et al.Exosomal PGAM1 promotes prostate cancer angiogenesis and metastasis by interacting with ACTG1[J].Cell Death Dis,2023,14(8): 502.DOI: 10.1038/s41419-023-06007-4.
[25]
Xu F,Wang X,Huang Y,et al.Prostate cancer cell-derived exosomal IL-8 fosters immune evasion by disturbing glucolipid metabolism of CD8+ T cell[J].Cell Rep,2023,42(11): 113424.DOI: 10.1016/j.celrep.2023.113424.
[26]
Naito Y,Yoshioka Y,Yamamoto Y,et al.How cancer cells dictate their microenvironment: present roles of extracellular vesicles[J].Cell Mol Life Sci,2017,74(4): 697-713.DOI: 10.1007/s00018-016-2346-3.
[27]
Webber J,Steadman R,Mason MD,et al.Cancer exosomes trigger fibroblast to myofibroblast differentiation[J].Cancer Res,2010,70(23): 9621-9630.DOI: 10.1158/0008-5472.CAN-10-1722.
[28]
Sun C,Mezzadra R,Schumacher TN.Regulation and function of the PD-L1 checkpoint[J].Immunity,2018,48(3): 434-452.DOI:10.1016/j.immuni.2018.03.014.
[29]
Guan H,Peng R,Fang F,et al.Tumor-associated macrophages promote prostate cancer progression via exosome-mediated miR-95 transfer[J].J Cell Physiol,2020,235(12): 9729-9742.DOI: 10.1002/jcp.29784.
[30]
鲍子戌,周海胜.肿瘤细胞的EMT 与免疫逃逸的研究进展[J].生命的化学,2017,37(6): 980-985.DOI: 10.13488/j.smhx.20170617.Bao ZX,Zhou HS.The research progress of the EMT and immune escape of cancer cells[J].Chem Life,2017,37(6): 980-985.DOI:10.13488/j.smhx.20170617.
[31]
Gaballa R,Ali HEA,Mahmoud MO,et al.Exosomes-mediated transfer of Itga2 promotes migration and invasion of prostate cancer cells by inducing epithelial-mesenchymal transition[J].Cancers,2020,12(8): 2300.DOI: 10.3390/cancers12082300.
[32]
Lin CJ,Yun EJ,Lo UG,et al.The paracrine induction of prostate cancer progression by caveolin-1[J].Cell Death Dis,2019,10(11):834.DOI: 10.1038/s41419-019-2066-3.
[33]
Pegtel DM,Gould SJ.Exosomes[J].Annu Rev Biochem,2019,88:487-514.DOI: 10.1146/annurev-biochem-013118-111902.
[34]
Kim J,Morley S,Le M,et al.Enhanced shedding of extracellular vesicles from amoeboid prostate cancer cells: potential effects on the tumor microenvironment[J].Cancer Biol Ther,2014,15(4): 409-418.DOI: 10.4161/cbt.27627.
[35]
Li SL,An N,Liu B,et al.Exosomes from LNCaP cells promote osteoblast activity through miR-375 transfer[J].Oncol Lett,2019,17(5): 4463-4473.DOI: 10.3892/ol.2019.10110.
[36]
Zhao H,Yang L,Baddour J,et al.Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism[J].eLife,2016,5: e10250.DOI: 10.7554/eLife.10250.
[37]
Shao X,Hua S,Feng T,et al.Hypoxia-regulated tumor-derived exosomes and tumor progression: a focus on immune evasion[J].Int J Mol Sci,2022,23(19): 11789.DOI: 10.3390/ijms231911789.
[38]
Josson S,Gururajan M,Sung SY,et al.Stromal fibroblast-derived miR-409 promotes epithelial-to-mesenchymal transition and prostate tumorigenesis[J].Oncogene,2015,34(21): 2690-2699.DOI:10.1038/onc.2014.212.
[39]
Zhang Y,Zhao J,Ding M,et al.Loss of exosomal miR-146a-5p from cancer-associated fibroblasts after androgen deprivation therapy contributes to prostate cancer metastasis[J].J Exp Clin Cancer Res,2020,39(1): 282.DOI: 10.1186/s13046-020-01761-1.
[40]
Vardaki I,Corn P,Gentile E,et al.Radium-223 treatment increases immune checkpoint expression in extracellular vesicles from the metastatic prostate cancer bone microenvironment[J].Clin Cancer Res,2021,27(11): 3253-3264.DOI: 10.1158/1078-0432.CCR-20-4790.
[41]
Gururajan M,Josson S,Chu GC,et al.miR-154* and miR-379 in the DLK1-DIO3 microRNA mega-cluster regulate epithelial to mesenchymal transition and bone metastasis of prostate cancer[J].Clin Cancer Res,2014,20(24): 6559-6569.DOI: 10.1158/1078-0432.CCR-14-1784.
[42]
Zhang G,Liu Y,Yang J,et al.Inhibition of circ_0081234 reduces prostate cancer tumor growth and metastasis via the miR-1/MAP 3 K1 axis[J].J Gene Med,2022,24(8): e3376.DOI: 10.1002/jgm.3376.
[43]
Abd Elmageed ZY,Yang Y,Thomas R,et al.Neoplastic reprogramming of patient-derived adipose stem cells by prostate cancer cell-associated exosomes[J].Stem Cells,2014,32(4): 983-997.DOI: 10.1002/stem.1619.
[44]
Gong C,Zhang X,Shi M,et al.Tumor exosomes reprogrammed by low pH are efficient targeting vehicles for smart drug delivery and personalized therapy against their homologous tumor[J].Adv Sci,2021,8(10): 2002787.DOI: 10.1002/advs.202002787.
[45]
Yi M,Niu M,Xu L,et al.Regulation of PD-L1 expression in the tumor microenvironment[J].J Hematol Oncol,2021,14(1): 10.DOI:10.1186/s13045-020-01027-5.
[46]
André F,Chaput N,Schartz NEC,et al.Exosomes as potent cellfree peptide-based vaccine.I.Dendritic cell-derived exosomes transfer functional MHC class I/peptide complexes to dendritic cells[J].J Immunol,2004,172(4): 2126-2136.DOI: 10.4049/jimmunol.172.4.2126.
[47]
Shi X,Sun J,Li H,et al.Antitumor efficacy of interferon-γ-modified exosomal vaccine in prostate cancer[J].Prostate,2020,80(11): 811-823.DOI: 10.1002/pros.23996.
[48]
Wang D,Wan Z,Yang Q,et al.Sonodynamical reversion of immunosuppressive microenvironment in prostate cancer via engineered exosomes[J].Drug Deliv,2022,29(1): 702-713.DOI:10.1080/10717544.2022.2044937.
[49]
Poggio M,Hu T,Pai CC,et al.Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory[J].Cell,2019,177(2): 414-427.e13.DOI: 10.1016/j.cell.2019.02.016.
[1] 张晓波, 巴特, 黄瑞娟, 王宏宇. 间充质干细胞外泌体改善急性肺损伤机制的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(01): 81-85.
[2] 曾繁润, 林永勇, 王君. 间充质干细胞外泌体促进创面血管新生机制的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(01): 86-89.
[3] 张忠涛, 高加勒, 姚宏伟. 新辅助放化疗联合免疫治疗局部进展期直肠癌的现状与前景[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(02): 119-122.
[4] 姚宏伟, 孙丽婷, 吴偲, 舒文龙, 高加勒, 杨正阳, 吴国聪, 张忠涛. 新辅助放化疗联合免疫治疗局部进展期直肠癌的探索与实践[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(02): 123-127.
[5] 王乾宇, 杜峻峰, 李世拥. 新辅助放化疗联合免疫治疗局部进展期直肠癌的突破与挑战[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(02): 128-131.
[6] 潘麒文, 何立儒. 前列腺癌放射治疗前沿进展荟萃[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 279-279.
[7] 李永红, 王骏, 肖恒军. 2025-NCCN前列腺癌诊治指南更新解读[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 129-133.
[8] 邱皓炜, 徐臻, 肖泽秀, 夏燕, 查高峰, 庞俊. 前列腺癌mRNA 疫苗研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 134-139.
[9] 罗添龙, 贺情情, 黄海. 泌尿功能障碍慢性病的长期综合管理和持久康复实践[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 21-26.
[10] 朱洪浩, 范新祥. 广东省医学会泌尿外科疑难病例多学科会诊(第18期)——女性尿道癌[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 120-124.
[11] 陈博滔, 胡宽, 毛先海. 胆囊癌肿瘤微环境与系统治疗[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(02): 203-208.
[12] 王重阳, 滑文文, 魏丽, 邱应和, 杨发才, 李函娟. 免疫治疗联合局部区域疗法治疗中晚期肝癌的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(02): 302-307.
[13] 黄忠晶, 张丽东, 伍子奕, 艾军华. 不可切除肝细胞癌的转化治疗[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 41-45.
[14] 孙志鹏, 束斌, 王良, 黄鑫, 王鹏飞, 李广欣, 王小娟, 黎功, 杨世忠. 放疗联合靶向免疫新辅助治疗肝内胆管细胞癌的安全性与疗效[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 92-96.
[15] 王闪闪, 赵海涛. 胆道癌转化手术策略[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(01): 1-5.
阅读次数
全文


摘要