切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2025, Vol. 19 ›› Issue (02) : 134 -139. doi: 10.3877/cma.j.issn.1674-3253.2025.02.002

专家论坛

前列腺癌mRNA 疫苗研究进展
邱皓炜1,2, 徐臻1, 肖泽秀3, 夏燕3, 查高峰2, 庞俊1,()   
  1. 1. 508107 深圳,中山大学附属第七医院泌尿外科
    2. 508107 深圳,中山大学附属第七医院科研中心
    3. 518107 深圳,虹信生物科技有限公司
  • 收稿日期:2024-11-08 出版日期:2025-04-01
  • 通信作者: 庞俊
  • 基金资助:
    国家自然科学基金(82272689)深圳市三名工程(SZSM202011011)深圳市医学研究专项资金(D2301013)

Updates of mRNA vaccine research for prostate cancer

Haowei Qiu1,2, Zhen Xu1, Zexiu Xiao3, Yan Xia3, Gaofeng Zha2, Jun Pang1,()   

  1. 1. Department of Urology,the Seventh Affiliated Hospital of Sun Yat-sen University,Shenzhen 508107,China
    2. Research Center,the Seventh Affiliated Hospital of Sun Yat-sen University,Shenzhen 508107,China
    3. Shenzhen MagicRNA Biotech,Guangdong 508107,China
  • Received:2024-11-08 Published:2025-04-01
  • Corresponding author: Jun Pang
引用本文:

邱皓炜, 徐臻, 肖泽秀, 夏燕, 查高峰, 庞俊. 前列腺癌mRNA 疫苗研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 134-139.

Haowei Qiu, Zhen Xu, Zexiu Xiao, Yan Xia, Gaofeng Zha, Jun Pang. Updates of mRNA vaccine research for prostate cancer[J/OL]. Chinese Journal of Endourology(Electronic Edition), 2025, 19(02): 134-139.

前列腺癌由于特殊的免疫抑制性肿瘤微环境,通常被认为是“免疫沙漠型”肿瘤,包括免疫检查点抑制剂在内的免疫治疗方案对前列腺癌的临床治疗效果均不太理想。近年来信使核糖核酸(mRNA)肿瘤治疗性疫苗相关领域发展迅速,其通过激活和增强体内肿瘤抗原特异性T 细胞介导肿瘤杀伤。本文综述了mRNA 疫苗在前列腺癌中的应用进展及挑战,为未来mRNA 药物研究提供参考。

The low infiltration of immune cells,especially T cells,in prostate cancer often leads to its classification as an "immune desert",resulting in poor outcomes with immunotherapy,including immune checkpoint inhibitors.The development of mRNA vaccines has progressed rapidly in recent years.mRNA cancer vaccines have been shown to induce tumor-specific T cells and humoral immune responses that enhance the cytotoxicity against tumor cells.This paper reviews the progress and challenges of mRNA vaccines in prostate cancer,providing references for future research and the development of mRNA therapeutics.

图1 mRNA 在抗原呈递细胞中激活先天免疫与适应性免疫示意图
表1 体外刺激树突状细胞(DC)疫苗及脂质体复合物mRNA 疫苗相关研究的基本情况
靶点 临床试验阶段 临床试验编号 前列腺癌发展阶段 提高免疫效率的具体方法 结果
自体肿瘤细胞RNA Ⅰ期 NCT00010127 转移性前列腺癌 自体树突状细胞RNA转染 肿瘤特异性免疫反应显著,部分患者的PSA水平显著降低,肿瘤缩小或稳定,耐受性良好
PSA RNA Ⅰ/Ⅱ期 NCT00004211 Ⅳ期前列腺癌 自体树突状细胞RNA脉冲 安全性和可行性良好,患者对PSA的免疫反应显著增强,部分患者的肿瘤标志物PSA水平有所下降,但临床反应有待进一步验证
自体肿瘤细胞 Ⅰ期 NCT00108264 播散性疾病 树突状细胞转染自体肿瘤细胞RNA 试验证明安全性良好,显著增强了T细胞的免疫反应,大多数患者未出现严重副作用,但需要进一步研究以确认长期效果
端粒酶 Ⅰ/Ⅱ期 NCT01153113 转移性前列腺癌 树突状细胞RNA脉冲 端粒酶特异性T细胞反应显著增强,部分患者的PSA水平降低,肿瘤缩小,且耐受性良好,未出现严重副作用,显示出潜在疗效
前列腺特异性抗原 Ⅰ期 2011-001602-10 激素难治性前列腺癌 mRNA转染DC疫苗 安全性和有效性良好,部分患者显示出免疫反应显著,肿瘤缩小或稳定,未见严重副作用
RBL038、RBL039、RBL-040、RBL-041和RBL-045 Ⅰ/Ⅱ期 NCT04382898 去势抵抗性前列腺癌和高风险局限性前列腺癌 BNT-112癌症疫苗,Toll样受体7激动 安全性和免疫原性良好,显示出初步疗效,部分患者的肿瘤体积缩小或稳定,联合西米普利单抗显示出协同作用,但仍需更多数据以确定疗效
PSA、PSMA、PSC、STEAP1(PAP、Muc1) Ⅰ/Ⅱ期 NCT00831467 激素难治性前列腺癌 CV9103/CV9104疫苗 安全性和有效性良好,部分患者显示出延长生存期的潜力。在所有接受最高剂量治疗的患者中,76%检测到了抗原特异性细胞免疫反应,58%的有反应的患者和45%的所有可评估的患者在最高剂量水平下对多种抗原有反应
[1]
Noguchi M,Koga N,Moriya F,et al.Immunotherapy in prostate cancer: challenges and opportunities[J].Immunotherapy,2016,8(1):69-77.DOI: 10.2217/imt.15.101.
[2]
Cha HR,Lee JH,Ponnazhagan S.Revisiting immunotherapy: a focus on prostate cancer[J].Cancer Res,2020,80(8): 1615-1623.DOI:10.1158/0008-5472.CAN-19-2948.
[3]
Kantoff PW,Higano CS,Shore ND,et al.Sipuleucel-T immunotherapy for castration-resistant prostate cancer[J].N Engl J Med,2010,363(5): 411-422.DOI: 10.1056/NEJMoa1001294.
[4]
Tenchov R,Bird R,Curtze AE,et al.Lipid Nanoparticles—From liposomes to mRNA vaccine delivery,a landscape of research diversity and advancement[J].ACS Nano,2021,15(11): 16982-17015.DOI: 10.1021/acsnano.1c04996.
[5]
Xu S,Yang K,Li R,et al.mRNA vaccine era-mechanisms,drug platform and clinical prospection[J].Int J Mol Sci,2020,21(18):6582.DOI: 10.3390/ijms21186582.
[6]
Melton DA,Krieg PA,Rebagliati MR,et al.Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter[J].Nucleic Acids Res,1984,12(18): 7035-7056.DOI: 10.1093/nar/12.18.7035.
[7]
Malone RW,Felgner PL,Verma IM.Cationic liposome-mediated RNA transfection[J].Proc Natl Acad Sci USA,1989,86(16): 6077-6081.DOI: 10.1073/pnas.86.16.6077.
[8]
Karikó K,Buckstein M,Ni H,et al.Suppression of RNA recognition by toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA[J].Immunity,2005,23(2): 165-175.DOI: 10.1016/j.immuni.2005.06.008.
[9]
Karikó K,Muramatsu H,Welsh FA,et al.Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability[J].Mol Ther,2008,16(11): 1833-1840.DOI: 10.1038/mt.2008.200.
[10]
Linares-Fernández S,Lacroix C,Exposito JY,et al.Tailoring mRNA vaccine to balance innate/adaptive immune response[J].Trends Mol Med,2020,26(3): 311-323.DOI: 10.1016/j.molmed.2019.10.002.
[11]
Kranz LM,Diken M,Haas H,et al.Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy[J].Nature,2016,534(7607): 396-401.DOI: 10.1038/nature18300.
[12]
Miao L,Zhang Y,Huang L.mRNA vaccine for cancer immunotherapy[J].Mol Cancer,2021,20(1): 41.DOI: 10.1186/s12943-021-01335-5.
[13]
Karikó K,Muramatsu H,Ludwig J,et al.Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified,protein-encoding mRNA[J].Nucleic Acids Res,2011,39(21): e142.DOI: 10.1093/nar/gkr695.
[14]
Chaudhary N,Weissman D,Whitehead KA.mRNA vaccines for infectious diseases: principles,delivery and clinical translation[J].Nat Rev Drug Discov,2021,20(11): 817-838.DOI: 10.1038/s41573-021-00283-5.
[15]
Hargadon KM,Johnson CE,Williams CJ.Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors[J].Int Immunopharmacol,2018,62: 29-39.DOI: 10.1016/j.intimp.2018.06.001.
[16]
Topalian SL,Stephen Hodi F,Brahmer JR,et al.Safety,activity,and immune correlates of anti-PD-1 antibody in cancer[J].N Engl J Med,2012,366(26): 2443-2454.DOI: 10.1056/NEJMoa1200690.
[17]
Sharma P,Pachynski RK,Narayan V,et al.Nivolumab plus ipilimumab for metastatic castration-resistant prostate cancer:preliminary analysis of patients in the CheckMate 650 trial[J].Cancer Cell,2020,38(4): 489-499.e3.DOI: 10.1016/j.ccell.2020.08.007.
[18]
Fizazi K,Drake CG,Beer TM,et al.Final analysis of the ipilimumab versus placebo following radiotherapy phase III trial in postdocetaxel metastatic castration-resistant prostate cancer identifies an excess of long-term survivors[J].Eur Urol,2020,78(6): 822-830.DOI:10.1016/j.eururo.2020.07.032.
[19]
Zhang TY,Xu H,Zheng XN,et al.Clinical benefit and safety associated with mRNA vaccines for advanced solid tumors: a metaanalysis[J].MedComm,2023,4(4): e286.DOI: 10.1002/mco2.286.
[20]
Heiser A,Dahm P,Yancey DR,et al.Human dendritic cells transfected with RNA encoding prostate-specific antigen stimulate prostate-specific CTL responses in vitro[J].J Immunol,2000,164(10): 5508-5514.DOI: 10.4049/jimmunol.164.10.5508.
[21]
Heiser A,Maurice MA,Yancey DR,et al.Induction of polyclonal prostate cancer-specific CTL using dendritic cells transfected with amplified tumor RNA[J].J Immunol,2001,166(5): 2953-2960.DOI:10.4049/jimmunol.166.5.2953.
[22]
Su Z,Dannull J,Yang BK,et al.Telomerase mRNA-transfected dendritic cells stimulate antigen-specific CD8+ and CD4+ T cell responses in patients with metastatic prostate cancer[J].J Immunol,2005,174(6): 3798-3807.DOI: 10.4049/jimmunol.174.6.3798.
[23]
Mu LJ,Kyte JA,Kvalheim G,et al.Immunotherapy with allotumour mRNA-transfected dendritic cells in androgen-resistant prostate cancer patients[J].Br J Cancer,2005,93(7): 749-756.DOI: 10.1038/sj.bjc.6602761.
[24]
Lilleby W,Tryggestad AM,Bigalke I,et al.Biochemical relapse in very high-risk prostate cancer after radical prostatectomy and DCvaccine loaded with tumor RNA,hTERT,and survivin[J].J Clin Oncol,2020,38(6_suppl): 324.DOI: 10.1200/jco.2020.38.6_suppl.324.
[25]
Kübler H,Scheel B,Gnad-Vogt U,et al.Self-adjuvanted mRNA vaccination in advanced prostate cancer patients: a first-in-man phase I/IIa study[J].J Immunother Cancer,2015,3: 26.DOI: 10.1186/s40425-015-0068-y.
[26]
Barve A,Jin W,Cheng K.Prostate cancer relevant antigens and enzymes for targeted drug delivery[J].J Control Release,2014,187:118-132.DOI: 10.1016/j.jconrel.2014.05.035.
[27]
Lopez-Bujanda ZA,Obradovic A,Nirschl TR,et al.TGM4: an immunogenic prostate-restricted antigen[J].J Immunother Cancer,2021,9(6): e001649.DOI: 10.1136/jitc-2020-001649.
[28]
Zhou F,Shang W,Yu X,et al.Glypican-3: a promising biomarker for hepatocellular carcinoma diagnosis and treatment[J].Med Res Rev,2018,38(2): 741-767.DOI: 10.1002/med.21455.
[29]
Butler W,Xu L,Zhou Y,et al.Oncofetal protein glypican-3 is a biomarker and critical regulator of function for neuroendocrine cells in prostate cancer [J].J Pathol,2023,260(1):43-55.Doi: 10.1002/path.6147.
[30]
Zheng X,Xu H,Yi X,et al.Tumor-antigens and immune landscapes identification for prostate adenocarcinoma mRNA vaccine[J].Mol Cancer,2021,20(1): 160.DOI: 10.1186/s12943-021-01452-1.
[31]
Dong YM,Zhang GG,Huang XJ,et al.Promising MS2 mediated virus-like particle vaccine against foot-and-mouth disease[J].Antiviral Res,2015,117: 39-43.DOI: 10.1016/j.antiviral.2015.01.005.
[32]
Li J,Sun Y,Jia T,et al.Messenger RNA vaccine based on recombinant MS2 virus-like particles against prostate cancer[J].Int J Cancer,2014,134(7): 1683-1694.DOI: 10.1002/ijc.28482.
[33]
Frega G,Wu Q,Le Naour J,et al.Trial Watch: experimental TLR7/TLR8 agonists for oncological indications[J].Oncoimmunology,2020,9(1): 1796002.DOI: 10.1080/2162402X.2020.1796002.
[34]
Islam MA,Rice J,Reesor E,et al.Adjuvant-pulsed mRNA vaccine nanoparticle for immunoprophylactic and therapeutic tumor suppression in mice[J].Biomaterials,2021,266: 120431.DOI:10.1016/j.biomaterials.2020.120431.
[35]
Xu Y,Hu Y,Xia H,et al.Delivery of mRNA vaccine with 1,2-diesters-derived lipids elicits fast liver clearance for safe and effective cancer immunotherapy[J].Adv Healthcare Mater,2024,13(5): e2302691.DOI: 10.1002/adhm.202302691.
[36]
Xu Z,Xiao ZX,Wang J,et al.Novel mRNA adjuvant ImmunER enhances prostate cancer tumor-associated antigen mRNA therapy via augmenting T cell activity[J].Oncoimmunology,2024,13(1):2373526.DOI: 10.1080/2162402X.2024.2373526.
[37]
Kalina JL,Neilson DS,Comber AP,et al.Immune modulation by androgen deprivation and radiation therapy: implications for prostate cancer immunotherapy[J].Cancers,2017,9(2): 13.DOI: 10.3390/cancers9020013.
[38]
Xie N,Shen G,Gao W,et al.Neoantigens: promising targets for cancer therapy [J].Signal Transduct Target Ther,2023,8(1): 9.Doi:10.1038/s41392-022-01270-x.
[1] 杨倩, 李秋洋, 李楠, 罗渝昆, 唐杰. 基于超声纹理影像转录组学预测前列腺癌[J/OL]. 中华医学超声杂志(电子版), 2024, 21(03): 319-326.
[2] 李永红, 王骏, 肖恒军. 2025-NCCN前列腺癌诊治指南更新解读[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 129-133.
[3] 潘麒文, 何立儒. 前列腺癌放射治疗前沿进展荟萃[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 279-279.
[4] 罗添龙, 贺情情, 黄海. 泌尿功能障碍慢性病的长期综合管理和持久康复实践[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 21-26.
[5] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[6] 施一辉, 张平新, 朱勇, 杨德林. 机器人辅助前列腺根治术后切缘阳性的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 633-637.
[7] 王功炜, 李书豪, 魏松, 吕博然, 胡成. 溶瘤病毒M1对不同前列腺癌细胞杀伤效果的研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 626-632.
[8] 祝炜安, 林华慧, 吴建杰, 黄炯煅, 吴婷婷, 赖文杰. RDM1通过CDK4促进前列腺癌细胞进展的研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 618-625.
[9] 胡思平, 熊性宇, 徐航, 杨璐. 衰老相关分泌表型因子在前列腺癌发生发展中的作用机制[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 425-434.
[10] 杨勇军, 曾一鸣, 贺显雅, 卢强, 李远伟. ASA分级≥Ⅲ级患者局麻经会阴前列腺多模态影像融合穿刺的安全性和有效性[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 441-447.
[11] 李鑫钊, 张廷涛, 朱峰, 刘金山, 刘大闯. 血纤维蛋白原、D-二聚体及碱性磷酸酶诊断前列腺癌骨转移的价值分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 459-463.
[12] 刘中文, 刘畅, 高洋, 刘东, 林世庆, 杨建华, 赵福义. 尿液microRNA-326与腹腔镜根治性膀胱切除术治疗膀胱癌患者预后的相关性研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 386-391.
[13] 张铭星, 刘文倩, 王以然, 赵泽恬, 袁欣怡, 丁留成. 江苏地区腹腔镜下前列腺癌根治术后一年夜尿症发生率及相关危险因素多中心回顾性研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 141-145.
[14] 杨龙雨禾, 王跃强, 招云亮, 金溪, 卫娜, 杨智明, 张贵福. 人工智能辅助临床决策在泌尿系肿瘤的应用进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 178-182.
[15] 陈钊, 钟克力, 江志鹏, 傅宇翔, 范宝航, 吴文飞. 前列腺癌术后腹股沟疝的发生率及危险因素分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(04): 396-401.
阅读次数
全文


摘要