切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2025, Vol. 19 ›› Issue (04) : 412 -417. doi: 10.3877/cma.j.issn.1674-3253.2025.04.003

专家论坛

肾盂癌的影像诊断及进展
王明媚, 李勇()   
  1. 510120 广州,中山大学孙逸仙纪念医院放射科
  • 收稿日期:2024-10-12 出版日期:2025-08-01
  • 通信作者: 李勇

Imaging diagnosis and progress of renal pelvic cancer

Mingmei Wang, Yong Li()   

  1. Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
  • Received:2024-10-12 Published:2025-08-01
  • Corresponding author: Yong Li
引用本文:

王明媚, 李勇. 肾盂癌的影像诊断及进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 412-417.

Mingmei Wang, Yong Li. Imaging diagnosis and progress of renal pelvic cancer[J/OL]. Chinese Journal of Endourology(Electronic Edition), 2025, 19(04): 412-417.

肾盂癌是上尿路上皮来源的恶性肿瘤中最常见的一种,由于其治疗方式与肾细胞来源的良恶性肿瘤截然不同,因此治疗前影像学的准确诊断非常重要。本文就肾盂癌的影像学检查方法及优劣、CT/MRI的影像学表现及与肾细胞癌、肾感染性疾病等的鉴别诊断进行综述,并对以减少辐射剂量为目的的分次注射对比剂、双源CT的应用以及以提高影像质量和预测肿瘤对治疗反应为目的的人工智能的相关应用做了简单介绍,以期为临床选择适合的检查方法提供策略,并提高影像学对该疾病诊断的准确性,同时了解该疾病影像方面未来的发展趋势。

Renal pelvis cancer is the most common malignant tumor originating from the upper urinary tract epithelium. Since its treatment approach differs significantly from benign and malignant tumors of renal cell origin, accurate imaging diagnosis before treatment is extremely important. This review provides a comprehensive overview of the imaging methods for renal pelvis cancer, their advantages and limitations, CT/MRI imaging characteristics, and differential diagnosis from renal cell carcinoma and Renal infectious diseases. It also briefly introduces applications aimed at reducing radiation dose through split contrast agent injection, dual-energy CT utilization, and artificial intelligence applications designed to improve image quality and predict tumor response to treatment. The aim is to provide strategies for selecting appropriate imaging methods in clinical practice, improve the diagnostic accuracy of imaging for this disease, and learn about future trends in imaging advancements of this disease.

[1]
Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1): 7-33. DOI: 10.3322/caac.21708.
[2]
Pandolfo SD, Cilio S, Aveta A, et al. Upper Tract Urothelial Cancer: Guideline of Guidelines[J]. Cancers, 2024, 16(6):16. DOI: 10.3390/cancers16061115.
[3]
King KG. Use of contrast ultrasound for renal mass evaluation[J]. Radiol Clin North Am, 2020, 58(5): 935-949. DOI: 10.1016/j.rcl.2020.05.002.
[4]
Zhang B, Li J, Wu Z, et al. Contrast-enhanced ultrasound characteristics of renal pelvis urothelial carcinoma and its relationship with microvessel density[J]. Ultrasound Med Biol, 2021, 47(2): 236-243. DOI: 10.1016/j.ultrasmedbio.2020.09.006.
[5]
Expert Panel on Urological Imaging, Wolfman DJ, Marko J, et al. ACR appropriateness criteria® hematuria[J]. J Am Coll Radiol, 2020, 17(5S): S138-S147. DOI: 10.1016/j.jacr.2020.01.028.
[6]
Abouelkheir RT, Elawdy MM, Taha DE, et al. The accuracy of computed tomography in the diagnosis of upper urinary tract urothelial carcinoma in correlation with the final histopathology: a retrospective study in 275 patients at a Tertiary Urology Institute[J]. Urol Ann, 2021, 13(4): 356-361. DOI: 10.4103/UA.UA_32_20.
[7]
Galtung KF, Lauritzen PM, Sandbæk G, et al. Is a single nephrographic phase computed tomography sufficient for detecting urothelial carcinoma in patients with visible haematuria?A prospective paired noninferiority comparison[J]. Eur Urol Open Sci, 2023, 55: 1-10. DOI: 10.1016/j.euros.2023.06.005.
[8]
Ali O, Fishman EK, Sheth S. Upper urinary tract urothelial carcinoma on multidetector CT: spectrum of disease[J]. Abdom Radiol, 2019, 44(12): 3874-3885. DOI: 10.1007/s00261-019-02173-2.
[9]
Alessandrino F, Ghaith O, Williams K, et al. Advanced urothelial cancer: a radiology update[J]. Abdom Radiol (NY), 2019, 44(12): 3858-3873. DOI: 10.1007/s00261-019-02148-3.
[10]
姚婧, 周建军. 不同类型浸润性肾盂癌: MDCT动态增强表现及误诊分析[J]. 临床放射学杂志, 2017, 36(4): 526-530. DOI: 10.13437/j.cnki.jcr.2017.04.022.
[11]
连世东, 张泳华, 图爽, 等. 实质型肾盂癌多层螺旋CT诊断[J]. 中国临床医学影像杂志, 2015, 26(5): 371-373.
[12]
李浩杰, 梁丽丽, 李安琴, 等. 浸润性肾盂癌MRI诊断价值[J]. 实用放射学杂志, 2017, 33(2): 236-239. DOI: 10.3969/j.issn.1002-1671.2017.02.019.
[13]
Zou J, Ye J, Zhu W, et al. Diffusion-weighted and diffusion kurtosis imaging analysis of microstructural differences in clear cell renal cell carcinoma: a comparative study[J]. Br J Radiol, 2023, 96(1150): 20230146. DOI: 10.1259/bjr.20230146.
[14]
Yoshida R, Yoshizako T, Maruyama M, et al. The value of adding diffusion-weighted images for tumor detection and preoperative staging in renal pelvic carcinoma for the reader's experience[J]. Abdom Radiol (NY), 2017, 42(9): 2297-2304. DOI: 10.1007/s00261-017-1116-5.
[15]
Dursun M, Ozbek E, Otunctemur A, et al. Differentiating renal pelvic cancer from renal cell carcinoma with 18-fluorodeoxyglucose positron emission tomography-computed tomography[J]. J Cancer Res Ther, 2021, 17(4): 901-905. DOI: 10.4103/jcrt.JCRT_217_16.
[16]
Urso L, Bauckneht M, Albano D, et al. The evolution of PET imaging in renal, bladder, upper urinary tract urothelial, testicular and penile carcinoma - Today's impact, tomorrow's potential[J]. Expert Rev Med Devices, 2024, 21(1-2): 55-72. DOI: 10.1080/17434440.2023.2293919.
[17]
Zou Y, Liu L, Xie X, et al. Case Report: a MiT family translocation renal cell carcinoma in the renal pelvis, calyces and upper ureter misdiagnosed as upper tract urothelial carcinoma[J]. Front Oncol, 2023, 13: 1197578. DOI: 10.3389/fonc.2023.1197578.
[18]
Abou El-Ghar M, Farg H, Sharaf DE, et al. CT and MRI in urinary tract infections: a spectrum of different imaging findings[J]. Medicina, 2021, 57(1): 32. DOI: 10.3390/medicina57010032.
[19]
姜超, 吴哲, 孙露露, 等. IgG4相关性肾病累及肾盂的CT影像表现[J]. 放射学实践, 2021, 36(11): 1414-1418. DOI: 10.13609/j.cnki.1000-0313.2021.11.015.
[20]
Cheng K, Cassidy F, Aganovic L, et al. CT urography: how to optimize the technique[J]. Abdom Radiol (NY), 2019, 44(12): 3786-3799. DOI: 10.1007/s00261-019-02111-2.
[21]
Gershan V, Homayounieh F, Singh R, et al. CT protocols and radiation doses for hematuria and urinary stones: Comparing practices in 20 countries[J]. Eur J Radiol, 2020, 126: 108923. DOI: 10.1016/j.ejrad.2020.108923.
[22]
Cheng Y, Sun J, Li J, et al. The added value of virtual unenhanced images obtained from dual-energy CT urography in the detection and measurement of urinary stone[J]. Urology, 2022, 166: 118-125. DOI: 10.1016/j.urology.2022.02.029.
[23]
Dodig D, Solocki Matić T, Žuža I, et al. Side-by-side evaluation of virtual non-contrast and post-contrast images improves detection of clinically significant urolithiasis on single-phase split bolus dual-energy CT urography[J]. Br J Radiol, 2021, 94(1121): 20210013. DOI: 10.1259/bjr.20210013.
[24]
Li C, Lu B, Zhao Q, et al. Development and validation of a clinical and ultrasound features-based nomogram for preoperative differentiation of renal urothelial carcinoma and central renal cell carcinoma[J]. World J Urol, 2024, 42(1): 227. DOI: 10.1007/s00345-024-04935-0.
[25]
Chen M, Yin F, Yu Y, et al. CT-based multi-phase Radiomic models for differentiating clear cell renal cell carcinoma[J]. Cancer Imag, 2021, 21(1): 42. DOI: 10.1186/s40644-021-00412-8.
[26]
Zhai X, Sun P, Yu X, et al. CT-based radiomics signature for differentiating pyelocaliceal upper urinary tract urothelial carcinoma from infiltrative renal cell carcinoma[J]. Front Oncol, 2024, 13: 1244585. DOI: 10.3389/fonc.2023.1244585.
[27]
Zerunian M, Pucciarelli F, Caruso D, et al. Artificial intelligence based image quality enhancement in liver MRI: a quantitative and qualitative evaluation[J]. Radiol Med, 2022, 127(10): 1098-1105. DOI: 10.1007/s11547-022-01539-9.
[28]
Li M, Jiang Z, Shen W, et al. Deep learning in bladder cancer imaging: a review[J]. Front Oncol, 2022, 12: 930917. DOI: 10.3389/fonc.2022.930917.
[29]
Zhang X, Qiu Y, Jiang W, et al. Mean apparent propagator MRI: quantitative assessment of tumor-stroma ratio in invasive ductal breast carcinoma[J]. Radiol Imaging Cancer, 2024, 6(4): e230165. DOI: 10.1148/rycan.230165.
[30]
Cao M, Li Y, Tang Y, et al. Quantification of the engraftment status of mesenchymal stem cells in glioma using dual-modality magnetic resonance imaging and bioluminescence imaging[J]. Acad Radiol, 2025, 32(1): 334-346. DOI: 10.1016/j.acra.2024.07.008.
[31]
Li D, Chen J, Lu Y, et al. Codelivery of dual gases with metal-organic supramolecular cage-based microenvironment-responsive nanomedicine for atherosclerosis therapy[J]. Small, 2024: 2402673. DOI: 10.1002/smll.202402673.
[1] 阚光娟, 孙立群, 王敏言, 李俨育, 谭艳娟, 仇玉轩, 潘淑淑, 朱江. 宫颈胃型腺癌的多模态影像学表现[J/OL]. 中华医学超声杂志(电子版), 2024, 21(11): 1030-1041.
[2] 项文静, 徐燕, 茹彤, 郑明明, 顾燕, 戴晨燕, 朱湘玉, 严陈晨. 神经学超声检查在产前诊断胼胝体异常中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 470-476.
[3] 吴润池, 李娟娟. 乳腺颗粒细胞瘤1 例[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(01): 61-62.
[4] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[5] 刘静, 柴彦华, 来彦博, 马立燕. 儿童肾脓肿的临床特征及治疗[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(02): 189-194.
[6] 贺雪佳, 刘静, 张毓瑾, 贾凤林, 马鑫茂, 张慧, 宁刚, 曲海波, 廖怡. 胎儿生发基质-脑室内出血的影像学研究[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(01): 21-28.
[7] 刘振清, 黄莉, 王帅, 谢晨欣, 刘鸿圣. 胎盘MRI评分联合临床特征对胎盘植入性疾病孕妇产后出血的预测价值[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(01): 37-43.
[8] 牛田力, 牛春艳, 赵鹏飞, 李世俊. 动脉自旋标记技术对儿童毛细胞型星形细胞瘤与血管母细胞瘤及髓母细胞瘤脑血流量检测的临床价值[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(01): 61-66.
[9] 张嘉炜, 吴宇光, 余维东, 陈江明, 杨诚, 熊茂明. 前列腺MRI参数及临床因素与机器人前列腺癌根治术后腹股沟疝发生的相关性研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(03): 258-264.
[10] 刘明辉, 葛方明. MRI 对腹股沟疝修补术后患者早期并发症的评估价值研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 579-583.
[11] 徐俊洁, 罗虎, 陶锡鹏, 谢李词, 周向东. Ⅰ期非小细胞肺癌经气腔播散的临床、病理及双能量CT 参数与预测模型构建[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 213-219.
[12] 张立俊, 孙存杰, 胡春峰, 孟冲, 张辉. MSCT、DCE-MRI 评估术前胃癌TNM 分期的准确性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 519-523.
[13] 杨爽, 余宏亮, 谢敏. CT 与超声检查对急性胰腺炎合并脂肪肝的诊断价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 541-544.
[14] 张敏伟, 翟天旭, 张子秋, 王驰, 刘胜中, 李德春. 联合腹部CT 图像特征和临床指标的列线图模型对腹内高压评估的临床研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 549-554.
[15] 张双, 樊清语, 田雅乐, 柏福运, 贾岩龙. 肝脏乏脂肪型血管周上皮样细胞肿瘤的影像学特征[J/OL]. 中华诊断学电子杂志, 2025, 13(02): 97-102.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?