切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2021, Vol. 15 ›› Issue (04) : 275 -279. doi: 10.3877/cma.j.issn.1674-3253.2021.04.002

临床研究

基于多参数磁共振建立前列腺穿刺活检预测模型
卢振权1, 罗兵锋1, 李佩丰1, 袁渊1, 邢亚平1, 罗琳2, 王艳3, 贾亦真4, 侯健1, 梁松武1, 季瑞东1, 罗光彦1, 朱逸飞1,()   
  1. 1. 518058 深圳,香港大学深圳医院泌尿外科
    2. 518058 深圳,香港大学深圳医院放射部
    3. 518058 深圳,香港大学深圳医院病理部
    4. 518058 深圳,香港大学深圳医院中心实验室
  • 收稿日期:2021-04-17 出版日期:2021-08-01
  • 通信作者: 朱逸飞

A predictive model established based on MRI parameters for prostate biopsy in population with PSA greater than 4 ng/ml

Zhenquan Lu1, Bingfeng Luo1, Peifeng Li1, Yuan Yuan1, Yaping Xing1, Lin Luo2, Yan Wang3, Yizhen Jia4, Jian Hou1, Songwu Liang1, Ruidong Ji1, Guangyan Luo1, Yifei Zhu1,()   

  1. 1. Department of Urology, the University of Hong Kong Shenzhen Hospital, Shenzhen 518058, China
    2. Department of Radiology, the University of Hong Kong Shenzhen Hospital, Shenzhen 518058, China
    3. Department of Pathology, the University of Hong Kong Shenzhen Hospital, Shenzhen 518058, China
    4. Department of Central Laboratory, the University of Hong Kong Shenzhen Hospital, Shenzhen 518058, China
  • Received:2021-04-17 Published:2021-08-01
  • Corresponding author: Yifei Zhu
引用本文:

卢振权, 罗兵锋, 李佩丰, 袁渊, 邢亚平, 罗琳, 王艳, 贾亦真, 侯健, 梁松武, 季瑞东, 罗光彦, 朱逸飞. 基于多参数磁共振建立前列腺穿刺活检预测模型[J]. 中华腔镜泌尿外科杂志(电子版), 2021, 15(04): 275-279.

Zhenquan Lu, Bingfeng Luo, Peifeng Li, Yuan Yuan, Yaping Xing, Lin Luo, Yan Wang, Yizhen Jia, Jian Hou, Songwu Liang, Ruidong Ji, Guangyan Luo, Yifei Zhu. A predictive model established based on MRI parameters for prostate biopsy in population with PSA greater than 4 ng/ml[J]. Chinese Journal of Endourology(Electronic Edition), 2021, 15(04): 275-279.

目的

拟建立包含常用临床指标及磁共振参数的前列腺癌穿刺活检预测模型。

方法

回顾性分析2018年1月至2021年2月于香港大学深圳医院行超声引导下前列腺穿刺活检患者的临床资料。对年龄、前列腺体积、直肠指检结果、经直肠前列腺超声结果(TRUS)、fPSA/tPSA、第二版前列腺影像报告和数据系统(PI-RADs v2)评分、动态对比增强、表观弥散系数(ADC)等临床及核磁共振指标进行单因素及多因素分析,并建立前列腺穿刺活检预测模型,计算其ROC曲线下面积诊断效能。

结果

单因素分析显示年龄、前列腺体积、直肠指检结果、前列腺超声结果、ADC、动态对比增强及PI-RADS v2评分差异具有统计学意义(P<0.05),tPSA水平差异无统计学意义(P=0.1)。多因素分析显示fPSA/tPSA、经直肠超声结果、ADC及PI-RADS v2评分为独立危险因素。利用上述指标建立前列腺穿刺活检预测模型为P=1/1+exp[11.1-3.49×(fPSA/tPSA)-2.02×TRUS-1.59×ADC-1.73×PI-RADS]。

结论

基于PI-RADS v2评分及ADC建立前列腺癌穿刺活检预测模型,与单独应用PSA及其他临床指标相比能够提高前列腺癌的诊断效能。

Objective

To establish a prostate cancer biopsy prediction model that includes common clinical indicators, imaging indicators.

Methods

The clinical data of patients who underwent ultrasound-guided prostate biopsy in the University of Hong Kong-Shenzhen Hospital from January 2018 to February 2021 were analyzed retrospectively. Univariate analysis and multivariate analysis were conducted on MRI indicators and clinical indicators which include age, prostate volume, digital rectal examination results, transrectal prostate B-ultrasound results, fPSA/tPSA, PI-RADs v2 scores, dynamic contrast enhancement, apparent diffusion coefficient, etc.. A prostate biopsy prediction model was established and the area under the ROC curve was calculated to judge the diagnostic efficacy.

Result

Univariate analysis showed that differences of age, prostate volume, digital rectal examination results, prostate ultrasound results, apparent diffusion coefficient, dynamic contrast enhancement and PI-RADS v2 score were statistically significant (P<0.05), and there was no difference in tPSA (P=0.1). Multivariate analysis showed that fPSA/tPSA, transrectal ultrasound results, apparent diffusion coefficient and PI-RADS v2 score were independent risk factors. The prediction model of prostate biopsy established by the above indicators is P=1/1+exp[11.1-3.49×(fPSA/tPSA)-2.02×TRUS-1.59×ADC-1.73×PI-RADS].

Conclusion

Compared with only PSA and other clinical indicators, the establishment of a prostate cancer biopsy prediction model based on the PI-RADS v2 score and apparent diffusion coefficient can improve the diagnostic efficiency of prostate cancer.

表1 因变量赋值情况
表2 样本一般特征及单因素分析结果
图1 前列腺癌预测模型及独立危险因素ROC曲线
表3 前列腺癌多因素预测Logistic回归结果
表4 前列腺癌预测模型与独立危险因素ROC曲线比较
表5 恶性肿瘤组患者特征
[1]
Saeter T, Vlatkovic L, Waaler G, et al. Intraductal carcinoma of the prostate on diagnostic needle biopsy predicts prostate cancer mortality: a population-based study[J]. Prostate, 2017, 77(8): 859-865.
[2]
Vasavada SR, Dobbs RW, Kajdacsy-balla AA, et al. Inflammation on prostate needle biopsy is associated with lower prostate cancer risk: a meta-analysis [J]. J Urol, 2018, 199(5): 1174-1181.
[3]
Lavallee LT, Binette A, Witiuk K, et al. Reducing the harm of prostate cancer screening: repeated prostate-specific antigen testing [J]. Mayo Clin Proc, 2016, 91(1): 17-22.
[4]
Yoon DK, Park JY, Yoon S, et al. Can the prostate risk calculator based on Western population be applied to Asian population? [J]. Prostate, 2012, 72(7): 721-729.

URL    
[5]
王淼,王萱,侯惠民, 等. mp-MRI对前列腺癌诊断的敏感性及影响因素-基于前列腺癌病理大切片的单中心临床研究[J]. 中华泌尿外科杂志, 2020, 41(10): 746-751.
[6]
GJLH Van Leenders, dKTH Van, DJ Grignon, et al. The 2019 international society of urological pathology (isup) consensus conference on grading of prostatic carcinoma [J]. Am J Surg Pathol, 2020, 44(8): e87-e99.
[7]
Forte V, Cavallo AU, Bertolo R, et al. PI-RADS score v.2 in predicting malignancy in patients undergoing 5alpha-reductase inhibitor therapy[J]. Prostate Cancer Prostatic Dis, 2021, 24(1): 150-155.
[8]
Zhang L, Tang M, Chen S, et al. A meta-analysis of use of Prostate Imaging Reporting and Data System Version 2 (PI-RADS V2) with multiparametric MR imaging for the detection of prostate cancer[J].Eur Radiol,2017, 27(12): 5204-5214.
[9]
Rudolph MM, Baur ADJ, Cash H, et al. Diagnostic performance of PI-RADS version 2.1 compared to version 2.0 for detection of peripheral and transition zone prostate cancer [J]. Sci Rep, 2020, 10(1): 15982.
[10]
Oto A, Kayhan A, Jiang Y, et al. Prostate cancer: differentiation of central gland cancer from benign prostatic hyperplasia by using diffusion-weighted and dynamic contrast-enhanced MR imaging [J]. Radiology, 2010, 257(3): 715-723.
[11]
Delongchamps NB, Beuvon F, Eiss D, et al. Multiparametric MRI is helpful to predict tumor focality, stage, and size in patients diagnosed with unilateral low-risk prostate cancer [J]. Prostate Cancer Prostatic Dis, 2011, 14(3): 232-237.
[12]
Manetta R, Palumbo P, Gianneramo C, et al. Correlation between adc values and gleason score in evaluation of prostate cancer: multicentre experience and review of the literature[J]. Gland Surg, 2019, 8(Suppl 3): S216-S22.
[13]
Dola EF, Nakhla OL, Genidi EA. Assessing the validity of Prostate Imaging Reporting and Data System version 2 (PI-RADS v2) scoring system in diagnosis of peripheral zone prostate cancer[J]. Eur J Radiol Open, 2017, 4: 19-26.
[14]
Woo S, Suh CH, Kim SY, et al. Diagnostic performance of prostate imaging reporting and data system version 2 for detection of prostate cancer: a systematic review and diagnostic meta-analysis[J]. Eur Urol, 2017, 72(2): 177-188.
[1] 丁建民, 秦正义, 张翔, 周燕, 周洪雨, 王彦冬, 经翔. 超声造影与普美显磁共振成像对具有高危因素的≤3 cm肝结节进行LI-RADS分类诊断的前瞻性研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 930-938.
[2] 张莲莲, 惠品晶, 丁亚芳. 颈部血管超声在粥样硬化斑块易损性评估中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 816-821.
[3] 方晔, 谢晓红, 罗辉. 品管圈在提高前列腺癌穿刺检出率中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(07): 722-727.
[4] 岳志浩, 王晶, 闫子玉, 葛娜, 许向亮, 单小峰, 崔念晖. 牙槽外科相关舌神经损伤早期诊断及治疗中磁共振神经成像技术的应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 413-417.
[5] 李俊, 彭健韵, 邱婉冰, 窦倩怡, 潘福顺, 梁瑾瑜. 甲状腺结节恶性风险分层(指南):ACR TI-RADS与C-TIRADS诊断效能及不同医师使用指南一致性的多中心回顾性比较研究[J]. 中华普通外科学文献(电子版), 2023, 17(06): 401-407.
[6] 张俊, 罗再, 段茗玉, 裘正军, 黄陈. 胃癌预后预测模型的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 456-461.
[7] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[8] 李全喜, 唐辉军, 张健生, 杨飞. 基于MUSE-DWI与SS-DWI技术在前列腺癌图像中的对比研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 553-557.
[9] 韩宇, 张武, 李安琪, 陈文颖, 谢斯栋. MRI肝脏影像报告和数据系统对非肝硬化乙肝患者肝细胞癌的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 669-673.
[10] 孙钢. 超高场磁共振成像的发展现状与展望[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 369-372.
[11] 钟广俊, 刘春华, 朱万森, 徐晓雷, 王兆军. MRI联合不同扫描序列在胃癌术前分期诊断及化疗效果和预后的评估[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 378-382.
[12] 胡宝茹, 尚乃舰, 高迪. 中晚期肝细胞癌的DCE-MRI及DWI表现与免疫治疗预后的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 399-403.
[13] 吴凤芸, 滕鑫, 刘连娟. 高帧频超声造影与增强磁共振对不同直径原发性高分化肝细胞癌的诊断价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 404-408.
[14] 赵文毅, 邹冰子, 蔡冠晖, 刘永志, 温红. 超声应变力弹性成像联合MRI-DWI靶向引导穿刺在前列腺病变诊断中的应用[J]. 中华临床医师杂志(电子版), 2023, 17(9): 988-994.
[15] 王亚丹, 吴静, 黄博洋, 王苗苗, 郭春梅, 宿慧, 王沧海, 王静, 丁鹏鹏, 刘红. 白光内镜下结直肠肿瘤性质预测模型的构建与验证[J]. 中华临床医师杂志(电子版), 2023, 17(06): 655-661.
阅读次数
全文


摘要