[1] |
Zeng G, Mai Z, Xia S, et al. Prevalence of kidney stones in China: an ultrasonography based cross-sectional study [J]. BJU Int, 2017, 120(1): 109-116.
|
[2] |
Bird VY, Khan SR. How do stones form? Is unification of theories on stone formation possible? [J]. Arch Esp Urol, 2017, 70(1): 12-27.
|
[3] |
Randall A. The origin and growth of renal calculi[J]. Ann Surg, 1937, 105(6): 1009-1027.
|
[4] |
Lokeshwar SD, Randall VA, Dykes TE, et al. Dr. Alexander randall iii and the discovery of randall's plaques[J]. Urology, 2020, 146: 15-18.
|
[5] |
Khan SR, Canales BK. Unified theory on the pathogenesis of Randall's plaques and plugs[J]. Urolithiasis, 2015, 43(1): 109-123.
|
[6] |
Kaleta B. The role of osteopontin in kidney diseases [J]. Inflamm Res, 2019, 68(2): 93-102.
|
[7] |
Joshi S, Clapp WL, Wang W, et al. Osteogenic changes in kidneys of hyperoxaluric rats[J]. Biochim Biophys Acta, 2015, 1852(9): 2000-2012.
|
[8] |
Ferraro PM, Marano R, Primiano A, et al. Stone composition and vascular calcifications in patients with nephrolithiasis [J]. J Nephrol, 2019, 32(4): 589-594.
|
[9] |
Gay C, Letavernier E, Verpont MC, et al. Nanoscale analysis of randall's plaques by electron energy loss spectromicroscopy: insight in early biomineral formation in human kidney[J]. Urolithiasis, 2020, 14(2): 1823-1836.
|
[10] |
Khan SR, Canales BK, Dominguez-gutierrez PR. Randall's plaque and calcium oxalate stone formation: role for immunity and inflammation[J]. Nat Rev Nephrol, 2021, 17(6): 417-433.
|
[11] |
Sun AY, Hinck B, Cohen BR, et al. Inflammatory cytokines in the papillary tips and urine of nephrolithiasis patients [J]. J Endourol, 2018, 32(3): 236-244.
|
[12] |
Evan AP, Coe FL, Lingeman J, et al. Randall's plaque in stone formers originates in ascending thin limbs [J]. Am J Physiol Renal Physiol, 2018, 315(5): F1236-f1242.
|
[13] |
Bouderlique E, Tang E, Perez J, et al. Vitamin d and calcium supplementation accelerates randall's plaque formation in a murine model [J]. Am J Pathol, 2019, 189(11): 2171-2180.
|
[14] |
陈海冰,罗丽丹,王智谋. 输尿管软镜冷激光碎石术与钬激光碎石术治疗肾结石疗效比较 [J/CD]. 中华腔镜泌尿外科杂志(电子版), 2020, 14(02): 112-115.
URL
|
[15] |
吴伟力,沈华,廖凯, 等. 输尿管硬镜碎石术治疗输尿管上段结石的疗效影响因素分析 [J]. 中华腔镜泌尿外科杂志(电子版), 2020, 14(6): 439-443.
|
[16] |
Almeras C, Daudon M, Ploussard G, et al. Endoscopic description of renal papillary abnormalities in stone disease by flexible ureteroscopy: a proposed classification of severity and type [J]. World J Urol, 2016, 34(11): 1575-1582.
|
[17] |
Borofsky MS, Paonessa JE, Evan AP, et al. A proposed grading system to standardize the description of renal papillary appearance at the time of endoscopy in patients with nephrolithiasis [J]. J Endourol, 2016, 30(1): 122-127.
|
[18] |
Pless MS, Williams JC JR, Andreassen KH, et al. Endoscopic observations as a tool to define underlying pathology in kidney stone formers[J]. World J Urol, 2019, 37(10): 2207-2215.
|
[19] |
Almeras C, Daudon M, Estrade V, et al. Classification of the renal papillary abnormalities by flexible ureteroscopy: evaluation of the 2016 version and update [J]. World J Urol, 2021, 39(1): 177-185.
|
[20] |
Borofsky MS, Williams JC JR, Dauw CA, et al. Association between randall's plaque stone anchors and renal papillary pits [J]. J Endourol, 2019, 33(4): 337-342.
|
[21] |
Sabaté Arroyo XA, Pieras Ayala EC, Grases Freixedas F, et al. Relationship of endoscopic lesions of the renal papilla with type of renal stone and 24 h urine analysis [J]. BMC Urol, 2020, 20(1): 46.
|
[22] |
Xu G, Wen J, Wang B, et al. The clinical efficacy and safety of ureteroscopic laser papillotomy to treat intraductal papillary calculi associated with medullary sponge kidney [J]. Urology, 2015, 86(3): 472-476.
|
[23] |
Ferraro PM, Vittori M, Macis G, et al. Changes in renal papillary density after hydration therapy in calcium stone formers [J]. BMC Urol, 2018, 18(1): 101.
|
[24] |
Cohen AJ, Borofsky MS, Anderson BB, et al. Endoscopic Evidence That Randall's Plaque is Associated with Surface Erosion of the Renal Papilla [J]. J Endourol, 2017, 31(1): 85-90.
|
[25] |
Taguchi K, Hamamoto S, Okada A, et al. Genome-Wide Gene Expression Profiling of Randall's Plaques in Calcium Oxalate Stone Formers [J]. J Am Soc Nephrol, 2017, 28(1): 333-347.
|
[26] |
Taguchi K, Hamamoto S, Okada A, et al. Helper T-cell signaling and inflammatory pathway lead to formation of calcium phosphate but not calcium oxalate stones on randall's plaques [J]. Int J Urol, 2019, 26(6): 670-677.
|
[27] |
Chen J, Zhang D, Ji MF, et al. Activation of liver X receptor suppresses osteopontin expression and ameliorates nephrolithiasis [J]. J Cell Physiol, 2019, 234(8): 14109-14122.
|
[28] |
Zhu Z, Huang F, Xia W, et al. Osteogenic differentiation of renal interstitial fibroblasts promoted by lncrna malat1 may partially contribute to randall's plaque formation[J]. Front Cell Dev Biol, 2020, 8: 596363.
|
[29] |
Liu H, Ye T, Yang X, et al. H19 promote calcium oxalate nephrocalcinosis-induced renal tubular epithelial cell injury via a ceRNA pathway[J]. EBioMedicine, 2019, 50: 366-378.
|
[30] |
Zhu Z, Cui Y, Huang F, et al. Long non-coding rna h19 promotes osteogenic differentiation of renal interstitial fibroblasts through wnt-β-catenin pathway [J]. Mol Cell Biochem, 2020, 470(1-2): 145-155.
|
[31] |
Winfree S, Weiler C, Bledsoe SB, et al. Multimodal imaging reveals a unique autofluorescence signature of Randall's plaque [J]. Urolithiasis, 2021, 49(2): 123-135.
|