切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2022, Vol. 16 ›› Issue (01) : 14 -18. doi: 10.3877/cma.j.issn.1674-3253.2022.01.003

临床研究

基于磁共振表观扩散系数图像的影像组学模型对鉴别前列腺癌和前列腺增生的价值
袁为标1, 陆大军1,(), 李海峰1, 许明明1, 高辉1   
  1. 1. 224700 江苏,南通大学附属建湖医院影像科(核对科室)
  • 收稿日期:2020-09-09 出版日期:2022-02-01
  • 通信作者: 陆大军
  • 基金资助:
    盐城市医学科技发展计划项目(YK2015076)

Apparent diffusion coefficient map based radiomics model in differentiation of prostate cancer and benign prostate hyperplasia

Weibiao Yuan1, Dajun Lu1,(), Haifeng Li1, Mingming Xu1, Hui Gao1   

  1. 1. Department of Radiology, Jiangsu jianhu People's Hospital, Affiliated Hospital of Nantong University, Jiangsu 224700, China
  • Received:2020-09-09 Published:2022-02-01
  • Corresponding author: Dajun Lu
引用本文:

袁为标, 陆大军, 李海峰, 许明明, 高辉. 基于磁共振表观扩散系数图像的影像组学模型对鉴别前列腺癌和前列腺增生的价值[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2022, 16(01): 14-18.

Weibiao Yuan, Dajun Lu, Haifeng Li, Mingming Xu, Hui Gao. Apparent diffusion coefficient map based radiomics model in differentiation of prostate cancer and benign prostate hyperplasia[J/OL]. Chinese Journal of Endourology(Electronic Edition), 2022, 16(01): 14-18.

目的

探讨基于磁共振表观扩散系数(ADC)图像的影像组学模型对鉴别前列腺癌(PCa)和前列腺增生(BPH)的诊断价值。

方法

回顾性分析2018年12月至2019年5月在南通大学附属建湖医院,经手术病理证实且能确定病理分级的42例患者(PCa 21例、BPH 21例)的ADC图像。应用ITK-SNAP软件勾画兴趣区(ROI),将ADC图像导入Analysis-Kinetics分析软件,进行影像特征提取。采用Lasso回归分析进行特征降维。通过Lasso降维筛选出的特征和相应加权系数乘积的线性组合来建立鉴别PCa和BPH的模型,绘制ROC曲线评价模型鉴别PCa和BPH的预测效能。

结果

共提取396个影像组学特征,通过特征筛选后最后筛选出5个影像组学特征。建模后影像组学特征对鉴别PCa和BPH具有较好的预测效能,预测模型在训练组中鉴别效能的曲线下面积、准确度、敏感度、特异度、阳性预测值和阴性预测值分别为0.89、90%、80%、100%、100%和83%;在验证组中的曲线下面积、准确度、敏感度、特异度、阳性预测值和阴性预测值分别为0.96、83%、83%、83%、83%和83%。

结论

基于磁共振ADC图像的影像组学模型对诊断前列腺癌和前列腺增生具有一定价值。

Objective

To develop and validate an apparent diffusion coefficient (ADC)-based radiomics predictive model in distinguishing the prostate cancer from benign prostate hyperplasia.

Methods

The ADC imaging data of 42 patients (21 cases of prostate cancer, and 21 cases of benign prostate hyperplasia) with histologically confirmed from December 2018 to May 2019 were analyzed retrospectively. The software ITK-SNAP was used to draw the region of interest (ROI), and the radiomic features based on ADC map were generated automatically from Analysis-Kinetics(GE Healthcare). Lasso regression model was used for data dimension reduction. The linear combination of the features selected by Lasso dimensionality reduction screening and the corresponding weighted coefficient product was used to establish prediction model. The model performance was assessed with respect to discrimination using the area under the curve(AUC) of ROC analysis.

Results

396 radiomics features were extracted automatically by software and 5 features were left after redundancy reduction step. Radiomics features after modeling have a good predictive effect for the identification of prostate cancer and benign prostate hyperplasia. The prediction model showed good discrimination in both primary dataset(AUC=0.89, 95%; Accuracy=90%, sensitivity=80%, specificity=100%, positive predictive value=100%, negative predictive value=0.83) and independent validation datset(AUC=0.96, 95%; sensitivity=83%, Accuracy=90%, specificity=83%, positive predictive value=83%, negative predictive value=83%).

Conclusion

The radiomics model could provide important reference in differentiation between prostate cancer and benign prostate hyperplasia.

图2 前列腺增生结节影像学图像
图8 基于ADC图像纹理特征预测模型在验证组中的ROC
[1]
Rebecca LS, Kimberly DM, Ahmedin J. Cancer statistics, 2018[J]. CA Cancer J Clin, 2018, 68(1): 7-30.
[2]
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: Extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446.
[3]
Su C, Jiang J, Zhang S, et al. Radiomics based on multicontrast MRI can precisely differentiate among glioma subtypes and predict tumour-proliferative behaviour[J]. Eur Radiol, 2019, 29(4): 1986-1996.
[4]
胡斌, 徐克, 张立娜, 等. 基于表观扩散系数图像的影像组学模型对MRI乳腺影像报告与数据系统4类病变良恶性的鉴别诊断价值[J]. 中华放射学杂志, 2017, 51(12): 922.
[5]
孟闫凯, 张雨晨, 张翀达, 等. 对比MRI平扫、增强图像的影像组学标签对直肠癌生存期的预测价值[J]. 中华放射学杂志, 2018, 52(5): 349.
[6]
Emilia DW, Paweł W, Szymon B, et al. Least absolute shrinkage and selection operator and dimensionality reduction techniques in quantitative structure retention relationship modeling of retention in hydrophilic interaction liquid chromatography[J]. J Chromatogr A, 2015, 1403: 54-62.
[7]
Kumar V, Bora GS, Kumar R, et al. Multiparametric (mp) MRI of prostate cancer[J]. Prog Nucl Magn Reson Spectrosc, 2018, 105:23-40.
[8]
何兰, 黄燕琪, 马泽兰, 等. CT影像组学在非小细胞肺癌临床分期中的价值[J]. 中华放射学杂志, 2017, 51(12): 906-911.
[9]
范丽, 方梦捷, 董迪, 等. 影像组学对磨玻璃结节型肺腺癌病理亚型的预测效能[J]. 中华放射学杂志, 2017, 51(12): 912-917.
[10]
张晓燕, 朱海涛, 王林, 等. 基于MRI影像组学模型预测局部进展期直肠癌新辅助放化疗后淋巴结状态的研究[J]. 中华放射学杂志, 2017, 51(12): 926-932.
[11]
Peng Y, Jiang Y, Antic T, et al. Validation of quantitative analysis of multiparametric prostate MR images for prostate cancer detection and aggressiveness assessment: a cross-imager study[J]. Radiology, 2014, 271(2): 461.
[12]
冯华聪, 刘小彭. 多参数磁共振成像诊断前列腺癌的现状及发展前景[J/CD]. 中华腔镜泌尿外科杂志(电子版), 2019, 13(3): 211-214.
[13]
Ayumu K, Tsutomu T, Teruki S, et al. Incremental value of high b value diffusion-weighted magnetic resonance imaging at 3-T for prediction of extracapsular extension in patients with prostate cancer: preliminary experience[J] .Radiol Med, 2017, 122(3): 228-238.
[14]
Iyama Y, Nakaura T, Katahira K, et al. Development and validation of a logistic regression model to distinguish transition zone cancers from benign prostatic hyperplasia on multi-parametric prostate MRI[J]. Eur Radiol, 2017, 27(9): 3600-3608.
[15]
Mark W, Satheesh K, Rebecca ET, et al. Transition zone prostate cancer: Logistic regression and machine-learning models of quantitative ADC, shape and texture features are highly accurate for diagnosis[J]. J Magn Reson Imaging, 2019, 50(3): 940-950.
[16]
Jiang H, Ching WK, Cheung WS, et al. Hadamard Kernel SVM with applications for breast cancer outcome predictions[J]. BMC systems biology, 2017, 11 (Suppl 7): 138.
[1] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[2] 奚玲, 仝瀚文, 缪骥, 毛永欢, 沈晓菲, 杜峻峰, 刘晔. 基于肌少症构建的造口旁疝危险因素预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 48-51.
[3] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[4] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[5] 屈勤芳, 束方莲. 盆腔器官脱垂患者盆底重建手术后压力性尿失禁发生的影响因素及列线图预测模型构建[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 606-612.
[6] 祝炜安, 林华慧, 吴建杰, 黄炯煅, 吴婷婷, 赖文杰. RDM1通过CDK4促进前列腺癌细胞进展的研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 618-625.
[7] 王功炜, 李书豪, 魏松, 吕博然, 胡成. 溶瘤病毒M1对不同前列腺癌细胞杀伤效果的研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 626-632.
[8] 赵月, 田坤, 张宗明, 郭震天, 刘立民, 张翀, 刘卓. 降钙素原对老年急性重度胆囊炎发生的预测价值[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 801-806.
[9] 公宇, 廖媛, 尚梅. 肝细胞癌TACE术后复发影响因素及预测模型建立[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 818-824.
[10] 刘敏思, 李荣, 李媚. 基于GGT与Plt比值的模型在HBV相关肝细胞癌诊断中的作用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 831-835.
[11] 关小玲, 周文营, 陈洪平. PTAAR在乙肝相关慢加急性肝衰竭患者短期预后中的预测价值[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 841-845.
[12] 陆镜明, 韩大为, 任耀星, 黄天笑, 向俊西, 张谞丰, 吕毅, 王傅民. 基于术前影像组学的肝内胆管细胞癌淋巴结转移预测的系统性分析[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 852-858.
[13] 韦巧玲, 黄妍, 赵昌, 宋庆峰, 陈祖毅, 黄莹, 蒙嫦, 黄靖. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 715-721.
[14] 蔡晓雯, 李慧景, 丘婕, 杨翼帆, 吴素贤, 林玉彤, 何秋娜. 肝癌患者肝动脉化疗栓塞术后疼痛风险预测模型的构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 722-728.
[15] 王誉英, 刘世伟, 王睿, 曾娅玲, 涂禧慧, 张蒲蓉. 老年乳腺癌新辅助治疗病理完全缓解的预测因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 641-646.
阅读次数
全文


摘要