[1] |
Rebecca LS, Kimberly DM, Ahmedin J. Cancer statistics, 2018[J]. CA Cancer J Clin, 2018, 68(1): 7-30.
|
[2] |
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: Extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446.
|
[3] |
Su C, Jiang J, Zhang S, et al. Radiomics based on multicontrast MRI can precisely differentiate among glioma subtypes and predict tumour-proliferative behaviour[J]. Eur Radiol, 2019, 29(4): 1986-1996.
|
[4] |
胡斌, 徐克, 张立娜, 等. 基于表观扩散系数图像的影像组学模型对MRI乳腺影像报告与数据系统4类病变良恶性的鉴别诊断价值[J]. 中华放射学杂志, 2017, 51(12): 922.
|
[5] |
孟闫凯, 张雨晨, 张翀达, 等. 对比MRI平扫、增强图像的影像组学标签对直肠癌生存期的预测价值[J]. 中华放射学杂志, 2018, 52(5): 349.
|
[6] |
Emilia DW, Paweł W, Szymon B, et al. Least absolute shrinkage and selection operator and dimensionality reduction techniques in quantitative structure retention relationship modeling of retention in hydrophilic interaction liquid chromatography[J]. J Chromatogr A, 2015, 1403: 54-62.
|
[7] |
Kumar V, Bora GS, Kumar R, et al. Multiparametric (mp) MRI of prostate cancer[J]. Prog Nucl Magn Reson Spectrosc, 2018, 105:23-40.
|
[8] |
何兰, 黄燕琪, 马泽兰, 等. CT影像组学在非小细胞肺癌临床分期中的价值[J]. 中华放射学杂志, 2017, 51(12): 906-911.
|
[9] |
范丽, 方梦捷, 董迪, 等. 影像组学对磨玻璃结节型肺腺癌病理亚型的预测效能[J]. 中华放射学杂志, 2017, 51(12): 912-917.
|
[10] |
张晓燕, 朱海涛, 王林, 等. 基于MRI影像组学模型预测局部进展期直肠癌新辅助放化疗后淋巴结状态的研究[J]. 中华放射学杂志, 2017, 51(12): 926-932.
|
[11] |
Peng Y, Jiang Y, Antic T, et al. Validation of quantitative analysis of multiparametric prostate MR images for prostate cancer detection and aggressiveness assessment: a cross-imager study[J]. Radiology, 2014, 271(2): 461.
|
[12] |
冯华聪, 刘小彭. 多参数磁共振成像诊断前列腺癌的现状及发展前景[J/CD]. 中华腔镜泌尿外科杂志(电子版), 2019, 13(3): 211-214.
|
[13] |
Ayumu K, Tsutomu T, Teruki S, et al. Incremental value of high b value diffusion-weighted magnetic resonance imaging at 3-T for prediction of extracapsular extension in patients with prostate cancer: preliminary experience[J] .Radiol Med, 2017, 122(3): 228-238.
|
[14] |
Iyama Y, Nakaura T, Katahira K, et al. Development and validation of a logistic regression model to distinguish transition zone cancers from benign prostatic hyperplasia on multi-parametric prostate MRI[J]. Eur Radiol, 2017, 27(9): 3600-3608.
|
[15] |
Mark W, Satheesh K, Rebecca ET, et al. Transition zone prostate cancer: Logistic regression and machine-learning models of quantitative ADC, shape and texture features are highly accurate for diagnosis[J]. J Magn Reson Imaging, 2019, 50(3): 940-950.
|
[16] |
Jiang H, Ching WK, Cheung WS, et al. Hadamard Kernel SVM with applications for breast cancer outcome predictions[J]. BMC systems biology, 2017, 11 (Suppl 7): 138.
|