切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2022, Vol. 16 ›› Issue (01) : 14 -18. doi: 10.3877/cma.j.issn.1674-3253.2022.01.003

临床研究

基于磁共振表观扩散系数图像的影像组学模型对鉴别前列腺癌和前列腺增生的价值
袁为标1, 陆大军1,(), 李海峰1, 许明明1, 高辉1   
  1. 1. 224700 江苏,南通大学附属建湖医院影像科(核对科室)
  • 收稿日期:2020-09-09 出版日期:2022-02-01
  • 通信作者: 陆大军
  • 基金资助:
    盐城市医学科技发展计划项目(YK2015076)

Apparent diffusion coefficient map based radiomics model in differentiation of prostate cancer and benign prostate hyperplasia

Weibiao Yuan1, Dajun Lu1,(), Haifeng Li1, Mingming Xu1, Hui Gao1   

  1. 1. Department of Radiology, Jiangsu jianhu People's Hospital, Affiliated Hospital of Nantong University, Jiangsu 224700, China
  • Received:2020-09-09 Published:2022-02-01
  • Corresponding author: Dajun Lu
引用本文:

袁为标, 陆大军, 李海峰, 许明明, 高辉. 基于磁共振表观扩散系数图像的影像组学模型对鉴别前列腺癌和前列腺增生的价值[J]. 中华腔镜泌尿外科杂志(电子版), 2022, 16(01): 14-18.

Weibiao Yuan, Dajun Lu, Haifeng Li, Mingming Xu, Hui Gao. Apparent diffusion coefficient map based radiomics model in differentiation of prostate cancer and benign prostate hyperplasia[J]. Chinese Journal of Endourology(Electronic Edition), 2022, 16(01): 14-18.

目的

探讨基于磁共振表观扩散系数(ADC)图像的影像组学模型对鉴别前列腺癌(PCa)和前列腺增生(BPH)的诊断价值。

方法

回顾性分析2018年12月至2019年5月在南通大学附属建湖医院,经手术病理证实且能确定病理分级的42例患者(PCa 21例、BPH 21例)的ADC图像。应用ITK-SNAP软件勾画兴趣区(ROI),将ADC图像导入Analysis-Kinetics分析软件,进行影像特征提取。采用Lasso回归分析进行特征降维。通过Lasso降维筛选出的特征和相应加权系数乘积的线性组合来建立鉴别PCa和BPH的模型,绘制ROC曲线评价模型鉴别PCa和BPH的预测效能。

结果

共提取396个影像组学特征,通过特征筛选后最后筛选出5个影像组学特征。建模后影像组学特征对鉴别PCa和BPH具有较好的预测效能,预测模型在训练组中鉴别效能的曲线下面积、准确度、敏感度、特异度、阳性预测值和阴性预测值分别为0.89、90%、80%、100%、100%和83%;在验证组中的曲线下面积、准确度、敏感度、特异度、阳性预测值和阴性预测值分别为0.96、83%、83%、83%、83%和83%。

结论

基于磁共振ADC图像的影像组学模型对诊断前列腺癌和前列腺增生具有一定价值。

Objective

To develop and validate an apparent diffusion coefficient (ADC)-based radiomics predictive model in distinguishing the prostate cancer from benign prostate hyperplasia.

Methods

The ADC imaging data of 42 patients (21 cases of prostate cancer, and 21 cases of benign prostate hyperplasia) with histologically confirmed from December 2018 to May 2019 were analyzed retrospectively. The software ITK-SNAP was used to draw the region of interest (ROI), and the radiomic features based on ADC map were generated automatically from Analysis-Kinetics(GE Healthcare). Lasso regression model was used for data dimension reduction. The linear combination of the features selected by Lasso dimensionality reduction screening and the corresponding weighted coefficient product was used to establish prediction model. The model performance was assessed with respect to discrimination using the area under the curve(AUC) of ROC analysis.

Results

396 radiomics features were extracted automatically by software and 5 features were left after redundancy reduction step. Radiomics features after modeling have a good predictive effect for the identification of prostate cancer and benign prostate hyperplasia. The prediction model showed good discrimination in both primary dataset(AUC=0.89, 95%; Accuracy=90%, sensitivity=80%, specificity=100%, positive predictive value=100%, negative predictive value=0.83) and independent validation datset(AUC=0.96, 95%; sensitivity=83%, Accuracy=90%, specificity=83%, positive predictive value=83%, negative predictive value=83%).

Conclusion

The radiomics model could provide important reference in differentiation between prostate cancer and benign prostate hyperplasia.

图2 前列腺增生结节影像学图像
图8 基于ADC图像纹理特征预测模型在验证组中的ROC
[1]
Rebecca LS, Kimberly DM, Ahmedin J. Cancer statistics, 2018[J]. CA Cancer J Clin, 2018, 68(1): 7-30.
[2]
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: Extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446.
[3]
Su C, Jiang J, Zhang S, et al. Radiomics based on multicontrast MRI can precisely differentiate among glioma subtypes and predict tumour-proliferative behaviour[J]. Eur Radiol, 2019, 29(4): 1986-1996.
[4]
胡斌, 徐克, 张立娜, 等. 基于表观扩散系数图像的影像组学模型对MRI乳腺影像报告与数据系统4类病变良恶性的鉴别诊断价值[J]. 中华放射学杂志, 2017, 51(12): 922.
[5]
孟闫凯, 张雨晨, 张翀达, 等. 对比MRI平扫、增强图像的影像组学标签对直肠癌生存期的预测价值[J]. 中华放射学杂志, 2018, 52(5): 349.
[6]
Emilia DW, Paweł W, Szymon B, et al. Least absolute shrinkage and selection operator and dimensionality reduction techniques in quantitative structure retention relationship modeling of retention in hydrophilic interaction liquid chromatography[J]. J Chromatogr A, 2015, 1403: 54-62.
[7]
Kumar V, Bora GS, Kumar R, et al. Multiparametric (mp) MRI of prostate cancer[J]. Prog Nucl Magn Reson Spectrosc, 2018, 105:23-40.
[8]
何兰, 黄燕琪, 马泽兰, 等. CT影像组学在非小细胞肺癌临床分期中的价值[J]. 中华放射学杂志, 2017, 51(12): 906-911.
[9]
范丽, 方梦捷, 董迪, 等. 影像组学对磨玻璃结节型肺腺癌病理亚型的预测效能[J]. 中华放射学杂志, 2017, 51(12): 912-917.
[10]
张晓燕, 朱海涛, 王林, 等. 基于MRI影像组学模型预测局部进展期直肠癌新辅助放化疗后淋巴结状态的研究[J]. 中华放射学杂志, 2017, 51(12): 926-932.
[11]
Peng Y, Jiang Y, Antic T, et al. Validation of quantitative analysis of multiparametric prostate MR images for prostate cancer detection and aggressiveness assessment: a cross-imager study[J]. Radiology, 2014, 271(2): 461.
[12]
冯华聪, 刘小彭. 多参数磁共振成像诊断前列腺癌的现状及发展前景[J/CD]. 中华腔镜泌尿外科杂志(电子版), 2019, 13(3): 211-214.
[13]
Ayumu K, Tsutomu T, Teruki S, et al. Incremental value of high b value diffusion-weighted magnetic resonance imaging at 3-T for prediction of extracapsular extension in patients with prostate cancer: preliminary experience[J] .Radiol Med, 2017, 122(3): 228-238.
[14]
Iyama Y, Nakaura T, Katahira K, et al. Development and validation of a logistic regression model to distinguish transition zone cancers from benign prostatic hyperplasia on multi-parametric prostate MRI[J]. Eur Radiol, 2017, 27(9): 3600-3608.
[15]
Mark W, Satheesh K, Rebecca ET, et al. Transition zone prostate cancer: Logistic regression and machine-learning models of quantitative ADC, shape and texture features are highly accurate for diagnosis[J]. J Magn Reson Imaging, 2019, 50(3): 940-950.
[16]
Jiang H, Ching WK, Cheung WS, et al. Hadamard Kernel SVM with applications for breast cancer outcome predictions[J]. BMC systems biology, 2017, 11 (Suppl 7): 138.
[1] 张茜, 陈佳慧, 高雪萌, 赵傲雪, 黄瑛. 基于高帧频超声造影的影像组学特征鉴别诊断甲状腺结节良恶性的价值[J]. 中华医学超声杂志(电子版), 2023, 20(09): 895-903.
[2] 方晔, 谢晓红, 罗辉. 品管圈在提高前列腺癌穿刺检出率中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(07): 722-727.
[3] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[4] 李圣鹏, 方爱蓝, 刘诗宁, 王丹, 刘湘奇. 下颌阻生第三磨牙拔除难度的预测因素与评估方法[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 441-445.
[5] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[6] 甄子铂, 刘金虎. 基于列线图模型探究静脉全身麻醉腹腔镜胆囊切除术患者术后肠道功能紊乱的影响因素[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 61-65.
[7] 李晓阳, 刘柏隆, 周祥福. 大数据及人工智能对女性盆底功能障碍性疾病的诊断及风险预测[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 549-552.
[8] 李全喜, 唐辉军, 张健生, 杨飞. 基于MUSE-DWI与SS-DWI技术在前列腺癌图像中的对比研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 553-557.
[9] 林文斌, 郑泽源, 郑文能, 郁毅刚. 外伤性脾破裂腹腔镜脾切除术患者中转开腹风险预测模型构建[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 619-623.
[10] 单秋洁, 孙立柱, 徐宜全, 王之霞, 徐妍, 马浩, 刘田田. 中老年食管癌患者调强放射治疗期间放射性肺损伤风险模型构建及应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 388-393.
[11] 秦维, 王丹, 孙玉, 霍玉玲, 祝素平, 郑艳丽, 薛瑞. 血清层粘连蛋白、Ⅳ型胶原蛋白对代偿期肝硬化食管胃静脉曲张出血的预测价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 447-451.
[12] 张郁妍, 胡滨, 张伟红, 徐楣, 朱慧, 羊馨玥, 刘海玲. 妊娠中期心血管超声参数与肝功能的相关性及对不良妊娠结局的预测价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 499-504.
[13] 王小娜, 谭微, 李悦, 姜文艳. 预测性护理对结直肠癌根治术患者围手术期生活质量、情绪及并发症的影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 525-529.
[14] 郭震天, 张宗明, 赵月, 刘立民, 张翀, 刘卓, 齐晖, 田坤. 机器学习算法预测老年急性胆囊炎术后住院时间探索[J]. 中华临床医师杂志(电子版), 2023, 17(9): 955-961.
[15] 王亚丹, 吴静, 黄博洋, 王苗苗, 郭春梅, 宿慧, 王沧海, 王静, 丁鹏鹏, 刘红. 白光内镜下结直肠肿瘤性质预测模型的构建与验证[J]. 中华临床医师杂志(电子版), 2023, 17(06): 655-661.
阅读次数
全文


摘要