[1] |
Zhao T, Liao B, Yao J, et al. Is there any prognostic impact of intraductal carcinoma of prostate in initial diagnosed aggressively metastatic prostate cancer?[J]. Prostate, 2015, 75(3): 225-232.
|
[2] |
Siegel R, Miller K, Fuchs H, et al. Cancer statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33.
|
[3] |
马春光,叶定伟,李长岭, 等.前列腺癌的流行病学特征及晚期一线内分泌治疗分析[J]. 中华外科杂志, 2008, 46(12): 921-925.
|
[4] |
Liu X, Li H, Song B, et al. Polo-like kinase 1 phosphorylation of G2 and S-phase-expressed 1 protein is essential for p53 inactivation during G2 checkpoint recovery[J]. EMBO Rep, 2010, 11(8): 626-632.
|
[5] |
Ruan X, Zheng J, Liu X, et al. lncRNA LINC00665 stabilized by TAF15 impeded the malignant biological behaviors of glioma cells via STAU1-mediated mRNA degradation[J]. Mol Ther Nucleic Acids, 2020, 20: 823-840.
|
[6] |
Liu A, Zeng S, Lu X, et al. Overexpression of G2 and S phase-expressed-1 contributes to cell proliferation, migration, and invasion via regulating p53/FoxM1/CCNB1 pathway and predicts poor prognosis in bladder cancer[J]. Int J Biol Macromol, 2019, 123: 322-334.
|
[7] |
Lin F, Xie Y, Zhang X, et al. GTSE1 is involved in breast cancer progression in p53 mutation-dependent manner[J]. J Exp Clin Cancer Res, 2019, 38(1): 152.
|
[8] |
Lai W, Zhu W, Li X, et al. GTSE1 promotes prostate cancer cell proliferation via the SP1/FOXM1 signaling pathway[J]. Lab Invest, 2021, 101(5): 554-563.
|
[9] |
Tang Z, Li C, Kang B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses[J]. Nucleic Acids Res, 2017, 45(W1): W98-W102.
|
[10] |
Chandrashekar D, Bashel B, Balasubramanya S, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses[J]. Neoplasia, 2017, 19(8): 649-658.
|
[11] |
李骏,王骏,高漓, 等. 微小RNA-301a介导高血糖对前列腺癌细胞裸鼠移植瘤的促生长作用[J]. 中华实验外科杂志, 2015, 32(12): 2936-2938.
|
[12] |
Lai W, Zhu W, Xiao C, et al. HJURP promotes proliferation in prostate cancer cells through increasing CDKN1A degradation via the GSK3 β/JNK signaling pathway[J]. Cell Death Dis, 2021, 12(6): 583.
|
[13] |
Li X, Li J, Cai Y, et al. Hyperglycaemia-induced miR-301a promotes cell proliferation by repressing p21 and Smad4 in prostate cancer[J]. Cancer Lett, 2018, 418: 211-220.
|
[14] |
Zhang B, Zhang M, Li Q, et al. TPX2 mediates prostate cancer epithelial-mesenchymal transition through CDK1 regulated phosphorylation of ERK/GSK3 β/SNAIL pathway[J]. Biochem Biophys Res Commun, 2021, 546: 1-6.
|
[15] |
Labbé D, Sweeney C, Brown M, et al. TOP2A and EZH2 provide early detection of an aggressive prostate cancer subgroup[J]. Clin Cancer Res, 2017, 23(22): 7072-7083.
|
[16] |
Lin S, Kao C, Lee H, et al. Dysregulation of miRNAs-COUP-TFII-FOXM1-CENPF axis contributes to the metastasis of prostate cancer[J]. Nat Commun, 2016, 7: 11418.
|
[17] |
潘家强,覃展偶. 去势抵抗性前列腺癌的临床治疗进展与处理策略[J]. 中华腔镜泌尿外科杂志(电子版), 2018, 12(1): 67-70.
|
[18] |
Raab M, Discher D. Matrix rigidity regulates microtubule network polarization in migration[J]. Cytoskeleton (Hoboken), 2017, 74(3): 114-124.
|
[19] |
Colas E, Pedrola N, Devis L, et al. The EMT signaling pathways in endometrial carcinoma[J]. 2012, 14(10): 715-720.
|
[20] |
Alonso S, Tracey L, Ortiz P, et al. A high-throughput study in melanoma identifies epithelial-mesenchymal transition as a major determinant of metastasis[J]. Cancer Res, 2007, 67(1): 3450-3460.
|
[21] |
Johnson J. Cell adhesion molecules in the development and progression of malignant melanoma[J]. Cancer Metastasis Rev, 1999, 18(3): 345-357.
|
[22] |
Bendre S, Rondelet A, Hall C, et al. GTSE1 tunes microtubule stability for chromosome alignment and segregation by inhibiting the microtubule depolymerase MCAK[J]. J Cell Biol, 2016, 215(5): 631-647.
|
[23] |
Lin J, Wang W, Hu T, et al. FOXM1 contributes to docetaxel resistance in castration-resistant prostate cancer by inducing AMPK/mTOR-mediated autophagy[J]. Cancer Lett, 2020, 469: 481-489.
|