切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2022, Vol. 16 ›› Issue (03) : 262 -269. doi: 10.3877/cma.j.issn.1674-3253.2022.03.016

实验研究

ASF1B通过调控P53相关信号通路促进前列腺癌迁移和增殖的研究
雷震1, 郭正辉1, 唐晨1, 彭圣萌1, 任艳婷2, 吴宛桦1, 周杰1, 陈勇明1, 李凌峰1, 黄海1, 赖义明1,()   
  1. 1. 510120 广州,中山大学孙逸仙纪念医院泌尿外科;510120 广州,广东省泌尿系统疾病临床医学研究中心;510120 广州,广东省恶性肿瘤表观遗传与基因调控重点实验室
    2. 510120 广州,广东省恶性肿瘤表观遗传与基因调控重点实验室;510120 广州,中山大学孙逸仙纪念医院病理科
  • 收稿日期:2022-01-04 出版日期:2022-06-01
  • 通信作者: 赖义明
  • 基金资助:
    国家自然科学基金面上项目(81972384,81772733,81974395); 国家自然科学基金青年项目(81802527); 广东省科技计划项目(2021A1515010223); 广东省泌尿系统疾病临床医学研究中心(2020B1111170006); 广东省恶性肿瘤表观遗传与基因调控重点实验室(2020B1212060018)

ASF1B enhances the migration and proliferation of prostate cancers via regulating p53-related signaling pathways

Zhen Lei1, Zhenghui Guo1, Chen Tang1, Shengmeng Peng1, Yanting Ren2, Wanhua Wu1, Jie Zhou1, Yongming Chen1, Lingfeng Li1, Hai Huang1, Yiming Lai1,()   

  1. 1. Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
    2. Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
  • Received:2022-01-04 Published:2022-06-01
  • Corresponding author: Yiming Lai
引用本文:

雷震, 郭正辉, 唐晨, 彭圣萌, 任艳婷, 吴宛桦, 周杰, 陈勇明, 李凌峰, 黄海, 赖义明. ASF1B通过调控P53相关信号通路促进前列腺癌迁移和增殖的研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2022, 16(03): 262-269.

Zhen Lei, Zhenghui Guo, Chen Tang, Shengmeng Peng, Yanting Ren, Wanhua Wu, Jie Zhou, Yongming Chen, Lingfeng Li, Hai Huang, Yiming Lai. ASF1B enhances the migration and proliferation of prostate cancers via regulating p53-related signaling pathways[J/OL]. Chinese Journal of Endourology(Electronic Edition), 2022, 16(03): 262-269.

目的

研究组蛋白伴侣抗沉默功能1B(ASF1B)对前列腺癌(PCa)迁移和增殖能力的影响,探索ASF1B调控P53相关信号通路的具体分子机制。

方法

根据TCGA数据库中的数据分析ASF1B在前列腺癌患者中的生存预后情况,使用细胞小干扰RNA(SiRNA)敲低ASF1B表达后,通过Transwell细胞迁移实验比较细胞的运动能力,通过CCK8实验和平板克隆实验比较细胞的增殖能力,使用细胞凋亡实验比较细胞的凋亡率,通过转录组二代测序比较敲低ASF1B后各个信号通路的改变情况,通过Western-Blot实验及Q-PCR实验比较P53相关信号通路分子的蛋白质和mRNA水平变化,以阐明ASF1B对前列腺癌细胞的迁移及增殖能力的影响。

结果

SiRNA敲低ASF1B表达后,DU145和PC3细胞的运动能力降低,相同时间内穿过小室的细胞数减少。敲低ASF1B表达后,DU145和PC3细胞的细胞活力和集落形成个数及大小降低,细胞增殖能力下降。敲低ASF1B表达后,DU145和PC3细胞的凋亡率增加。敲低ASF1B表达后,PC3细胞的转录组二代测序结果提示P53信号通路受到调控(P<0.01)。敲低ASF1B表达后,PC3细胞内P53相关通路的P21、IGFBP3、BBC3表达量上升,Cyclin D、Snail、Slug表达量下降。

结论

ASF1B以非P53依赖的形式通过P53相关信号通路调控前列腺癌细胞的迁移及增殖,ASF1B有望成为前列腺癌的诊断及治疗的新型靶点。

Objective

To study the effect of Anti-Silencing Function 1B Histone Chaperone (ASF1B) on the migration and proliferation of prostate cancer (PCa), and to explore the specific molecular mechanism of ASF1B regulating P53-related signal pathway.

Methods

The survival and prognosis of ASF1B in prostate cancer patients was analyzed according to the data in TCGA database. After the expression of ASF1B was knocked down by small interference RNA (SiRNA), the mobility of cells was compared by Transwell cell migration test, the ability of cell proliferation was compared by CCK8 test and plate cloning test, and the apoptosis rate was compared by apoptosis test. The changes of signal pathways after ASF1B knockout were compared by transcriptome second generation sequencing, and the changes of protein and mRNA levels of P53 related signal pathway molecules were compared by Western-Blot test and Q-PCR test, in order to clarify the effect of ASF1B on the migration and proliferation of prostate cancer cells.

Results

After SiRNA knocked down the expression of ASF1B, the motor ability of DU145 and PC3 cells decreased, and the number of cells passing through the chamber decreased at the same time. After knocking down the expression of ASF1B, the number and size of cell viability and colony formation of DU145 and PC3 cells decreased, and the ability of cell proliferation decreased. After knocking down the expression of ASF1B, the percentage of apoptosis of DU145 and PC3 cells increased. After knocking down the expression of ASF1B, the second generation sequencing results of transcriptional group of PC3 cells showed that the P53 signal pathway was regulated. After knocking down the expression of ASF1B, the expression of p21, IGFBP3 and BBC3 of P53-related pathways in PC3 cells increased, while the expression of Cyclin D, Snail and Slug decreased.

Conclusion

ASF1B regulates the migration and proliferation of prostate cancer cells through P53-related signaling pathways in a P53-independent manner. ASF1B is expected to be a new target for the diagnosis and treatment of prostate cancer.

图2 敲低ASF1B表达后,DU145和PC3细胞的迁移能力下降(Transwell小室×200)
图3 敲低ASF1B表达后,DU145和PC3细胞的增殖能力下降注:a,b为CCK8实验检测敲低ASF1B后DU145细胞和PC3细胞的活力;c为集落形成实验,检测敲低ASF1B后DU145细胞和PC3细胞形成的集落大小和数目;*表示P<0.05,柱状图中各数据均以(±s)表示
图4 敲低ASF1B表达后,DU145和PC3细胞的凋亡增多注:细胞凋亡实验检测敲低ASF1B后DU145细胞和PC3细胞的凋亡情况;*表示P<0.05,柱状图中各数据均以(±s表示
图5 敲低ASF1B表达后,PC3细胞的P53相关信号通路受到调控注:a为KEGG数据富集分析提示敲低ASF1B表达后,PC3细胞内P53相关信号通路等信号通路受到影响;b为气泡图提示,敲低ASF1B表达后,PC3细胞内P53相关信号通路受调控最为明显
图6 敲低ASF1B表达后,PC3细胞内P53相关信号通路被激活注:a为在PC3细胞中敲低ASF1B表达后P53相关信号通路内分子的蛋白水平的变化。b为在PC3细胞中敲低ASF1B表达后P53相关信号通路下游分子的mRNA水平变化;*表示P<0.05,柱状图中各数据均以(±s)表示
表1 细胞小干扰RNA(siRNA)序列
[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2021, 71(3): 209-249.
[2]
Culp MB, Soerjomataram I, Efstathiou JA, et al. Recent global patterns in prostate cancer incidence and mortality rates [J]. Eur Urol, 2020, 77(1): 38-52.
[3]
HA Chung B, Horie S, Chiong E. The incidence, mortality, and risk factors of prostate cancer in Asian men [J]. Prostate Int, 2019, 7(1): 1-8.
[4]
Bill-Axelson A, Holmberg L, Garmo H, et al. Radical prostatectomy or watchful waiting in prostate cancer - 29-year follow-up [J]. N Engl J Med, 2018, 379(24): 2319-2329.
[5]
Wallis CJD, Glaser A, Hu JC, et al. Survival and complications following surgery and radiation for localized prostate cancer: an international collaborative review [J]. Eur Urol, 2018, 73(1): 11-20.
[6]
Corpet A, De Koning L, Toedling J, et al. Asf1b, the necessary Asf1 isoform for proliferation, is predictive of outcome in breast cancer [J]. EMBO J, 2011, 30(3): 480-493.
[7]
Liu X, Song J, Zhang Y, et al. ASF1B promotes cervical cancer progression through stabilization of CDK9 [J]. Cell Death Dis, 2020, 11(8): 705.
[8]
Ma J, Han W, Lu K. Comprehensive pan-cancer analysis and the regulatory mechanism of asf1b, a gene associated with thyroid cancer prognosis in the tumor micro-environment[J]. Front Oncol, 2021, 11:711756.
[9]
Zhou JQ, Qiu T, Chen ZB, et al. Anti-silencing function 1B histone chaperone promotes cell proliferation and migration via activation of the AKT pathway in clear cell renal cell carcinoma[J]. Biochem Biophys Res Commun, 2019, 511(1): 165-172.
[10]
Carrion A, Ingelmo-torres M, Lozano JJ, et al. Prognostic classifier for predicting biochemical recurrence in localized prostate cancer patients after radical prostatectomy[J]. Urol Oncol, 2021, 39(8): 493 e17-e25.
[11]
Hattori N, Ushijima T. Compendium of aberrant DNA methylation and histone modifications in cancer [J]. Biochem Biophys Res Commun, 2014, 455(1-2): 3-9.
[12]
Gurard-levin ZA, Almouzni G. Histone modifications and a choice of variant: a language that helps the genome express itself [J]. F1000Prime Rep, 2014, 6: 76.
[13]
Segura-bayona S, Stracker TH. The Tousled-like kinases regulate genome and epigenome stability: implications in development and disease [J]. Cell Mol Life Sci, 2019, 76(19): 3827-3841.
[14]
Huang J. Current developments of targeting the p53 signaling pathway for cancer treatment [J]. Pharmacol Ther, 2021, 220: 107720.
[15]
Xiao BD, Zhao YJ, Jia XY, et al. Multifaceted p21 in carcinogenesis, stemness of tumor and tumor therapy [J]. World J Stem Cells, 2020, 12(6): 481-7.
[16]
Taylor WR, Stark GR. Regulation of the G2/M transition by p53 [J]. Oncogene, 2001, 20(15): 1803-1815.
[17]
Li M, Wu W, Deng S, et al. TRAIP modulates the IGFBP3/AKT pathway to enhance the invasion and proliferation of osteosarcoma by promoting KANK1 degradation [J]. Cell Death Dis, 2021, 12(8): 767.
[18]
Park J, Jung MJ, Chung WY. The downregulation of IGFBP3 by TGF-beta signaling in oral cancer contributes to the osteoclast differentiation[J]. Biochem Biophys Res Commun, 2021, 534:381-386.
[19]
Shan Z, Liu Q, Li Y, et al. PUMA decreases the growth of prostate cancer PC-3 cells independent of p53 [J]. Oncol Lett, 2017, 13(3): 1885-1890.
[20]
Dey P, Strom A, Gustafsson JA. Estrogen receptor beta upregulates FOXO3a and causes induction of apoptosis through PUMA in prostate cancer [J]. Oncogene, 2014, 33(33): 4213-4225.
[21]
Wang SP, Wang WL, Chang YL, et al. p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug [J]. Nat Cell Biol, 2009, 11(6): 694-704.
[22]
Zhang J, Lei Y, Gao X, et al. p53 Attenuates the oncogenic Ras-induced epithelial-mesenchymal transition in human mammary epithelial cells [J]. Biochem Biophys Res Commun, 2013, 434(3): 606-613.
[23]
Wang Z, Jiang Y, Guan D, et al. Critical roles of p53 in epithelial-mesenchymal transition and metastasis of hepatocellular carcinoma cells [J]. PLoS One, 2013, 8(9): e72846.
[24]
Boutelle AM, Attardi LD. p53 and tumor suppression: it takes a network [J]. Trends Cell Biol, 2021, 31(4): 298-310.
[25]
Marei HE, Althani A, Afifi N, et al. p53 signaling in cancer progression and therapy [J]. Cancer Cell Int, 2021, 21(1): 703.
[26]
蔡江怡,朱乐乐. 组蛋白伴侣ASF1B在前列腺癌细胞的表达及其对体外细胞活力的影响[J]. 中国病理生理杂志, 2020, 36(9): 1602-1607.
[27]
Han G, Zhang X, Liu P, et al. Knockdown of anti-silencing function 1B histone chaperone induces cell apoptosis via repressing PI3K/Akt pathway in prostate cancer [J]. Int J Oncol, 2018, 53(5): 2056-2066.
[1] 杨倩, 李秋洋, 李楠, 罗渝昆, 唐杰. 基于超声纹理影像转录组学预测前列腺癌[J/OL]. 中华医学超声杂志(电子版), 2024, 21(03): 319-326.
[2] 黄福, 王黔, 金相任, 唐云川. VEGFR2、miR-27a-5p在胃癌组织中的表达与临床病理参数及预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 558-561.
[3] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[4] 祝炜安, 林华慧, 吴建杰, 黄炯煅, 吴婷婷, 赖文杰. RDM1通过CDK4促进前列腺癌细胞进展的研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 618-625.
[5] 王功炜, 李书豪, 魏松, 吕博然, 胡成. 溶瘤病毒M1对不同前列腺癌细胞杀伤效果的研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 626-632.
[6] 施一辉, 张平新, 朱勇, 杨德林. 机器人辅助前列腺根治术后切缘阳性的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 633-637.
[7] 胡思平, 熊性宇, 徐航, 杨璐. 衰老相关分泌表型因子在前列腺癌发生发展中的作用机制[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 425-434.
[8] 杨勇军, 曾一鸣, 贺显雅, 卢强, 李远伟. ASA分级≥Ⅲ级患者局麻经会阴前列腺多模态影像融合穿刺的安全性和有效性[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 441-447.
[9] 李鑫钊, 张廷涛, 朱峰, 刘金山, 刘大闯. 血纤维蛋白原、D-二聚体及碱性磷酸酶诊断前列腺癌骨转移的价值分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 459-463.
[10] 刘中文, 刘畅, 高洋, 刘东, 林世庆, 杨建华, 赵福义. 尿液microRNA-326与腹腔镜根治性膀胱切除术治疗膀胱癌患者预后的相关性研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 386-391.
[11] 陈钊, 钟克力, 江志鹏, 傅宇翔, 范宝航, 吴文飞. 前列腺癌术后腹股沟疝的发生率及危险因素分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(04): 396-401.
[12] 赵蒙蒙, 黄洁, 余荣环, 王葆青. 过表达小GTP酶Rab32抑制非小细胞肺癌细胞侵袭性生长[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 512-518.
[13] 黄程鑫, 陈莉, 刘伊楚, 王水良, 赖晓凤. OPA1 在乳腺癌组织的表达特征及在ER阳性乳腺癌细胞中的生物学功能研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 275-284.
[14] 曾聿理, 雷发容, 肖慧, 邱德亮, 谢静, 吴寻. 氯普鲁卡因通过调控circRNA-ZKSCAN1表达抑制肝癌Huh-7细胞体外生长和转移的研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 220-228.
[15] 杨兴业, 彭旭云, 曾倩, 梁伟铖, 肖翠翠, 郑俊, 姚嘉. LMO7通过靶向铁死亡促进肝细胞癌生长[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 370-376.
阅读次数
全文


摘要