切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2024, Vol. 18 ›› Issue (02) : 121 -125. doi: 10.3877/cma.j.issn.1674-3253.2024.02.001

专家论坛

前列腺癌免疫微环境中免疫抑制性细胞分类及其作用机制
曹飞1, 庞俊1,()   
  1. 1. 508107 深圳,中山大学附属第七医院泌尿外科
  • 收稿日期:2023-11-08 出版日期:2024-04-01
  • 通信作者: 庞俊
  • 基金资助:
    国家自然科学基金面上项目(82272689); 深圳市科创委基础研究面上项目(JCYJ20190809164617205)

Classification and mechanism of immunosuppressive cells in the immune microenvironment of prostate cancer

Fei Cao, Jun Pang()   

  • Received:2023-11-08 Published:2024-04-01
  • Corresponding author: Jun Pang
引用本文:

曹飞, 庞俊. 前列腺癌免疫微环境中免疫抑制性细胞分类及其作用机制[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 121-125.

Fei Cao, Jun Pang. Classification and mechanism of immunosuppressive cells in the immune microenvironment of prostate cancer[J]. Chinese Journal of Endourology(Electronic Edition), 2024, 18(02): 121-125.

大约1/9的男性会在一生中被诊断出患有前列腺癌,这是男性中诊断最多的癌症[1]。在我国前列腺癌的发病率呈持续上升趋势[2]。雄激素剥夺治疗(androgen deprivation therapy,ADT)是各类前列腺癌的基本治疗方法,但大多患者都不可避免地发展为去势抵抗性前列腺癌(castration-resistant prostate cancer,CRPC)或转移,转移性去势抵抗前列腺癌患者5年生存率约为30%,包括二代抗雄性激素疗法、化疗、放疗在内的新疗法虽然在一定程度上延缓了晚期前列腺癌的进展,但仍不能避免患者最终的死亡结局[3]

图1 前列腺癌免疫微环境中的免疫抑制性细胞
[1]
Miller KD, Nogueira L, Devasia T, et al. Cancer treatment and survivorship statistics, 2022 [J]. CA Cancer J Clin, 2022, 72(5): 409-436.
[2]
Zheng R, Zhang S, Zeng H, et al. Cancer incidence and mortality in China, 2016 [J]. JNCC, 2022, 2(1): 1-9.
[3]
李恒平, 张矛, 王向荣, 等. 转移性前列腺癌治疗药物的最新进展[J]. 中国男科学杂志, 2022, 36(4): 101-107.
[4]
冯涛. 前列腺癌联合免疫治疗的研究进展[J]. 国际泌尿系统杂志, 2021, 41(1): 171-5.
[5]
王岩, 薛蔚. 前列腺癌肿瘤免疫微环境的研究进展[J]. 国际泌尿系统杂志, 2022, 42(1): 127-130.
[6]
曾进, 陈忠. 前列腺癌肿瘤疫苗免疫治疗研究进展[J]. 现代泌尿生殖肿瘤杂志, 2016, 8(6): 321-323.
[7]
何华东, 李昶灸. 免疫检查点抑制剂治疗转移性去势抵抗性前列腺癌的研究进展[J]. 浙江医学, 2021, 43(24): 2613-2618.
[8]
景文江,陈嘉琦,罗若楠,马武. 宫颈癌患者免疫功能、肠道微生物与放射性肠炎的相关性研究[J].新医学, 2023, 54(9): 676-680.
[9]
高西壮, 杨永红, 于伟, 等. 调节性细胞死亡在炎症性肠病中的研究进展[J]. 中华炎性肠病杂志, 2023, 7(4): 365-370.
[10]
Apert C, Galindo-albarran AO, Castan S, et al. IL-2 and IL-15 drive intrathymic development of distinct periphery-seeding CD4(+)Foxp3(+) regulatory T lymphocytes [J]. Front Immunol, 2022, 13: 965303.
[11]
Oita S, Saito T, Sakamoto A, et al. Frequency and function of circulating regulatory T-cells in biliary atresia [J]. Pediatr Surg Int, 2022, 39(1): 23.
[12]
Ju M, Fan J, Zou Y, et al. Computational recognition of a regulatory T-cell-specific signature with potential implications in prognosis, immunotherapy, and therapeutic resistance of prostate cancer [J]. Front Immunol, 2022, 13: 807840.
[13]
Maeda S, Motegi T, Iio A, et al. Anti-CCR4 treatment depletes regulatory T cells and leads to clinical activity in a canine model of advanced prostate cancer [J]. J Immunother Cancer, 2022, 10(2): e003731.
[14]
Davidsson S, Carlsson J, Greenberg L, et al. Cutibacterium acnes induces the expression of immunosuppressive genes in macrophages and is associated with an increase of regulatory T-Cells in prostate cancer [J]. Microbiol Spectr, 2021, 9(3): e0149721.
[15]
Laheurte C, Thiery-vuillemin A, Calcagno F, et al. Metronomic cyclophosphamide induces regulatory T cells depletion and PSA-specific T cells reactivation in patients with biochemical recurrent prostate cancer [J]. Int J Cancer, 2020, 147(4): 1199-1205.
[16]
章步文,黎钢,叶津津,等.不同分期前列腺癌患者外周血CD4+ CD25+ Foxp3+调节性T细胞的变化及与胰岛素抵抗的相关性[J].中华男科学杂志, 2015, 21(5): 420-423.
[17]
Bejarano L, Jordao MJC, Joyce JA. Therapeutic targeting of the tumor microenvironment [J]. Cancer Discov, 2021, 11(4): 933-959.
[18]
Larionova I, Tuguzbaeva G, Ponomaryova A, et al. Tumor-associated macrophages in human breast, colorectal, lung, ovarian and prostate cancers [J]. Front Oncol, 2020, 10: 566511.
[19]
Pozzi S, Scomparin A, Ben-shushan D, et al. MCP-1/CCR2 axis inhibition sensitizes the brain microenvironment against melanoma brain metastasis progression [J]. JCI Insight, 2022, 7(17): e154804.
[20]
Wu K, Lin K, Li X, et al. Redefining tumor-associated macrophage subpopulations and functions in the tumor microenvironment [J]. Front Immunol, 2020, 11: 1731.
[21]
程叶, 蒯晴叶, 张艳, 等. TAM在肿瘤免疫治疗中的研究进展[J/OL]. 肿瘤: 1-11[2023-11-15].

URL    
[22]
夏莹, 张岩, 杨永广, 等. 靶向肿瘤相关巨噬细胞的肿瘤治疗研究进展[J]. 中国免疫学杂志, 2019, 35(11): 1405-1409.
[23]
胡香萍. 肿瘤相关巨噬细胞在肿瘤中的作用及治疗策略研究[J]. 医学信息, 2022, 35(20): 166-169.
[24]
Gentles AJ, Newman AM, Liu CL, et al. The prognostic landscape of genes and infiltrating immune cells across human cancers [J]. Nat Med, 2015, 21(8): 938-945.
[25]
Xie T, Fu DJ, Li ZM, et al. CircSMARCC1 facilitates tumor progression by disrupting the crosstalk between prostate cancer cells and tumor-associated macrophages via miR-1322/CCL20/CCR6 signaling [J]. Mol Cancer, 2022, 21(1): 173.
[26]
Osmulski PA, Cunsolo A, Chen M, et al. Contacts with macrophages promote an aggressive nanomechanical phenotype of circulating tumor cells in prostate cancer [J]. Cancer Res, 2021, 81(15): 4110-4123.
[27]
Peng Y, Zhao M, Hu Y, et al. Blockade of exosome generation by GW4869 inhibits the education of M2 macrophages in prostate cancer [J]. BMC Immunol, 2022, 23(1): 37.
[28]
崔维刚, 时会芳, 张敏, 等. 髓源性抑制细胞在肿瘤微环境中作用的研究进展[J]. 中国医药, 2022, 17(10): 1592-1596.
[29]
Calcinotto A, Spataro C, Zagato E, et al. IL-23 secreted by myeloid cells drives castration-resistant prostate cancer [J]. Nature, 2018, 559(7714): 363-369.
[30]
Koinis F, Xagara A, Chantzara E, et al. Myeloid-derived suppressor cells in prostate cancer: present knowledge and future perspectives [J]. Cells, 2021, 11(1):20.
[31]
Macias M, Garcia-cortes A, Torres M, et al. Characterization of the perioperative changes of exosomal immune-related cytokines induced by prostatectomy in early-stage prostate cancer patients [J]. Cytokine, 2021, 141: 155471.
[32]
Lopez-bujanda ZA, Haffner MC, Chaimowitz MG, et al. Castration-mediated IL-8 promotes myeloid infiltration and prostate cancer progression [J]. Nat Cancer, 2021, 2(8): 803-818.
[33]
Gao F, Xu Q, Tang Z, et al. Exosomes derived from myeloid-derived suppressor cells facilitate castration-resistant prostate cancer progression via S100A9/circMID1/miR-506-3p/MID1 [J]. J Transl Med, 2022, 20(1): 346.
[34]
Jia Q, Wu W, Wang Y, et al. Local mutational diversity drives intratumoral immune heterogeneity in non-small cell lung cancer [J]. Nat Commun, 2018, 9(1): 5361.
[35]
姚亚龙, 李金洲, 穆彦熹, 等. 微原纤维相关糖蛋白在实体肿瘤中的研究进展[J]. 现代消化及介入诊疗, 2022, 27(10): 1356-1362.
[36]
Liu W, Wang MM, Wang M, et al. Single-cell and bulk RNA sequencing reveal cancer-associated fibroblast heterogeneity and a prognostic signature in prostate cancer [J]. Medicine (Baltimore), 2023, 102(32): e34611.
[37]
杨肖莉, 薛桦, 于莹, 等. 肿瘤相关成纤维细胞促癌作用的研究进展[J]. 国际检验医学杂志, 2022, 43(18): 2292-2297.
[38]
Liao CP, Chen LY, Luethy A, et al. Androgen receptor in cancer-associated fibroblasts influences stemness in cancer cells [J]. Endocr Relat Cancer, 2017, 24(4): 157-170.
[39]
Shen T, Li Y, Wang D, et al. YAP1-TEAD1 mediates the perineural invasion of prostate cancer cells induced by cancer-associated fibroblasts [J]. Biochim Biophys Acta Mol Basis Dis, 2022, 1868(12): 166540.
[40]
Jia D, Zhou Z, Kwon OJ, et al. Stromal FOXF2 suppresses prostate cancer progression and metastasis by enhancing antitumor immunity [J]. Nat Commun, 2022, 13(1): 6828.
[41]
Ma J, Chen X, Chen Y, et al. Ligustilide inhibits tumor angiogenesis by downregulating VEGFA secretion from cancer-associated fibroblasts in prostate cancer via TLR4 [J]. Cancers (Basel), 2022, 14(10): 2046.
[1] 陆宜仙, 张震涛, 夏德萌, 王家林. 巨噬细胞极化在骨质疏松中调控作用及机制的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 538-541.
[2] 赵向阳, 刘双池, 张懿刚, 陶滔, 谈燚. 顺铂对肝细胞癌Hep3B细胞程序性死亡配体1表达及药物敏感性的研究[J]. 中华普通外科学文献(电子版), 2024, 18(01): 51-55.
[3] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[4] 钱龙, 陆晓峰, 王行舟, 杜峻峰, 沈晓菲, 管文贤. 神经系统调控胃肠道肿瘤免疫应答研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 86-89.
[5] 李腾成, 黄群雄, 胡成, 肖恒军, 徐锦斌, 高舜天, 黄展森, 高新, 狄金明. 机器人腹腔镜后入路筋膜内和筋膜外根治性前列腺切除术技术分析[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 12-18.
[6] 邓瑞锋, 程璐, 周宇林, 刘远灵, 江文聪, 江敏耀, 江福能, 习明. TGF-β1诱导骨髓间充质干细胞外泌体分泌miR-424-3p促进前列腺癌细胞增殖及转移[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 82-89.
[7] 朱兴墅, 郑师尧, 王庆惠, 陈力, 刘旺武, 纪辉涛, 王瑜, 赵虎, 方永超. 蛋白磷酸酶-1催化亚基β在结直肠癌诊断、预后及免疫浸润中的生物信息学分析[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(06): 321-330.
[8] 朱迎, 赵征, 许达, 陆录, 殷保兵. 免疫检查点抑制剂治疗肝细胞癌的进展与展望[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 5-10.
[9] 张占国. 靶向免疫治疗时代的肝癌肝切除术再思考[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 11-15.
[10] 卓长华, 叶韵斌, 陈昌江, 简锦亮, 王志纬. 林奇综合征相关性异时性结直肠癌的治疗[J]. 中华结直肠疾病电子杂志, 2024, 13(01): 32-37.
[11] 赵海清, 张威, 李琴. 肌苷联合免疫检查点抑制剂在转移性结直肠癌患者中的临床疗效观察[J]. 中华结直肠疾病电子杂志, 2024, 13(01): 54-62.
[12] 蒲丹, 龙煊, 周玉龙, 李甘霖. 血清外泌体miR-224对结直肠癌肝转移患者射频消融治疗后复发的预测价值[J]. 中华消化病与影像杂志(电子版), 2024, 14(01): 45-52.
[13] 李杨, 郭昆亮, 詹必成, 胡泉泉, 戴瑜珍. SMARCA4缺失性非小细胞肺癌临床病理特征、分子遗传学及程序性细胞死亡配体1表达分析[J]. 中华临床医师杂志(电子版), 2023, 17(12): 1309-1314.
[14] 张可, 闫琳琳, 王鹏飞, 章秀林, 赵帆, 胡守奎. 外泌体环状RNA在肿瘤免疫和癌症免疫治疗中的作用[J]. 中华临床医师杂志(电子版), 2023, 17(10): 1102-1108.
[15] 吕泉龙, 史文杰, 孙文国. 免疫检查点抑制剂在治疗转移性去势抵抗性前列腺癌中的研究进展[J]. 中华诊断学电子杂志, 2024, 12(01): 69-72.
阅读次数
全文


摘要