切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2024, Vol. 18 ›› Issue (01) : 82 -89. doi: 10.3877/cma.j.issn.1674-3253.2024.01.015

实验研究

TGF-β1诱导骨髓间充质干细胞外泌体分泌miR-424-3p促进前列腺癌细胞增殖及转移
邓瑞锋, 程璐, 周宇林, 刘远灵, 江文聪, 江敏耀, 江福能, 习明()   
  1. 510800 广州,南方医科大学第三临床医学院广州市花都区人民医院
    广州市花都区人民医院检验科
    广州市花都区人民医院泌尿外科
    510180 广州市第一人民医院,广东省临床分子医学及分子诊断重点实验室
  • 收稿日期:2023-10-10 出版日期:2024-02-01
  • 通信作者: 习明
  • 基金资助:
    广州市科技计划项目(202102080624); 广州市医学重点学科建设项目(2021-2023年)

TGF-β1 induced hBMSCs exosomes to secrete miR-424-3p to promote the proliferation and migration of prostate cancer cells

Ruifeng Deng, Lu Cheng, Yulin Zhou, Yuanling Liu, Wencong Jiang, Minyao Jiang, Funeng Jiang, Ming Xi()   

  1. The Third School of Clinical Medicine, Southern Medical University, Huadu District People's Hospital of Guangzhou
    Department of Laboratory, Huadu District People's Hospital, Guangzhou 510800, China
    Department of Urology, Huadu District People's Hospital, Guangzhou 510800, China
    Guangzhou First People's Hospital, Guangdong key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou 510180, China
  • Received:2023-10-10 Published:2024-02-01
  • Corresponding author: Ming Xi
引用本文:

邓瑞锋, 程璐, 周宇林, 刘远灵, 江文聪, 江敏耀, 江福能, 习明. TGF-β1诱导骨髓间充质干细胞外泌体分泌miR-424-3p促进前列腺癌细胞增殖及转移[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 82-89.

Ruifeng Deng, Lu Cheng, Yulin Zhou, Yuanling Liu, Wencong Jiang, Minyao Jiang, Funeng Jiang, Ming Xi. TGF-β1 induced hBMSCs exosomes to secrete miR-424-3p to promote the proliferation and migration of prostate cancer cells[J]. Chinese Journal of Endourology(Electronic Edition), 2024, 18(01): 82-89.

目的

探讨TGF-β1诱导骨髓间充质干细胞(hBMSCs)成骨分化来源的外泌体对前列腺癌(PCa)细胞PC-3的增殖、迁移和侵袭的影响。

方法

通过ELISA检测碱性磷酸酶(ALP)活性和Western blot检测TGF-β1诱导hBMSCs成骨分化相关蛋白;采用超速离心法从细胞培养液中分离提取外泌体,使用投射电子显微镜(TEM)、纳米粒径追踪技术(NTA)以及Western blot对分离得到的外泌体进行鉴定;通过深度RNA测序技术鉴定TGF-β1诱导后hBMSCs外泌体中miRNA的表达谱和qPCR检测miRNA在外泌体中的表达水平;CCK8法检测细胞活力,Wound-healing检测细胞迁移能力,Trans-well试验检测细胞侵袭能力。

结果

与对照组相比,TGF-β1能显著提高hBMSCs的ALP活性,以及成骨相关因子BMP-2、OCN和RUNX2蛋白表达水平(P<0.001)。与hBMSCs组相比,TGF-β1_hBMSCs组的细胞增殖、迁移和侵袭能力显著提高(P<0.001)。接着成功分离hBMSCs(hBMSCs_Exo组)和TGF-β1诱导后hBMSCs(TGF-β1_hBMSCs_Exo组)培养液上清中的外泌体,透射电子显微镜下观察到外泌体典型的囊泡状结构,且表达CD9、CD63和CD81等外泌体特异性蛋白,其中TGF-β1_hBMSCs_Exo组浓度高于hBMSCs_Exo组浓度。基于miRNA测序显示TGF-β1_hBMSCs_Exo中95个miRNA分子表达升高,选择前5个miRNA进行qPCR验证,相比较于hBMSCs_Exo组,miR-424-3p在TGF-β1_hBMSCs_Exo组中显著升高(P<0.001)。这和miRNA测序结果相一致。与miRNA NC组相比,miR-424-3p mimic组和TGF-β1_hBMSCs_Exo中PC3细胞的增殖、迁移和侵袭能力均显著升高(P<0.001);miR-424-3p mimic组和TGF-β1-Exo组细胞增殖、迁移和侵袭能力差异无统计学意义(P>0.05)。

结论

TGF-β1诱导hBMSCs外泌体miR-424-3p能显著提高PC3细胞的增殖、迁移和侵袭能力,可能为出现骨转移性PCa个体化治疗提供新的靶点。

Objective

To investigate the effect of exosomes derived from TGF-β1-induced osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) on the proliferation, migration, and invasion of prostate cancer (PCa) PC-3 cells.

Methods

The impact of TGF-β1-induced osteogenic differentiation of hBMSCs was assessed using ALP ELISA and Western blot. Exosomes were isolated from cell culture supernatants via ultracentrifugation and characterized using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot. The expression profile of miRNAs in hBMSCs exosomes following TGF-β1 induction was determined using deep RNA sequencing technology, and the expression level of miRNAs in exosomes was measured using qPCR. Cell proliferation was evaluated using the CCK8 assay, cell migration ability was assessed using the Wound-healing assay, and cell invasion ability was determined using the Trans-well assay.

Results

Compared to the control group, TGF-β1 treatment significantly increased the alkaline phosphatase (ALP) activity on hBMSCs and resulted in a significant up regulation of osteogenic-related factors BMP-2, OCN, and RUNX2 at the protein level, with significant differences (P<0.001). Additionally, it was found that compared to the PC3 cells in hBMSCs group, the proliferation, migration, and invasion abilities of PC3 cells in the TGF-β1-treated hBMSCs group were significantly elevated (P<0.001). Subsequently, exosomes were successfully isolated from the culture supernatants of hBMSCs (hBMSCs_Exo group) and BMSCs following TGF-β1 induction (TGF-β1_hBMSCs_Exo group). Under transmission electron microscopy, typical vesicular structures of exosomes were observed, and exosome-specific proteins such as CD9, CD63, and CD81 were expressed. Notably, the concentration of TGF-β1_hBMSCs_Exo was higher than that of hBMSCs_Exo. Based on miRNA sequencing results, 95 miRNAs were found to be upregulated in TGF-β1_hBMSCs_Exo. The top 5 miRNAs were selected for qPCR validation. The results showed that compared to hBMSCs_Exo, miR-424-3p expression was significantly increased in TGF-β1_hBMSCs_Exo (P<0.001), which was consistent with the miRNA sequencing results. Compared to the miRNA NC group, the proliferation, migration, and invasion abilities of PC3 cells in the miR-424-3p mimic group and TGF-β1_hBMSCs_Exo group were all significantly elevated (P<0.001). Furthermore, it was found that there was no significant difference between the proliferation, migration, and invasion abilities of the miR-424-3p mimic group and TGF-β1_hBMSCs_Exo group.

Conclusion

The miR-424-3p present in hBMSCs exosomes induced by TGF-β1 can significantly enhance the proliferation, migration and invasion abilities of PC3 cells. These findings may provide a new target for individualized treatment of bone metastatic PCa.

图1 TGF-β1增加hBMSCs中的碱性磷酸酶活性(a)和成骨相关蛋白表达水平(b)注:***P<0.001
图2 TGF-β1处理的hBMSCs培养上清液对PC3细胞增殖实验(a)、侵袭实验(b~c)和划痕实验(d~e)注:TGF-β1能显著提高PC3细胞增殖、迁移和侵袭能力;与PC3组相比,***P<0.001;与hBMSCs+PC3组相比,###P<0.001
图3 透射电镜观察外泌体形态(a),外泌体粒径以及浓度检测(b)和外泌体特异性标志性蛋白检测(c)注:hBMSCs_Exo为从hBMSCs获得的外泌体,TGF-β1_hBMSCs_Exo为经TGF-β1处理hBMSCs获得的外泌体
图4 miRNA测序中hBMSCs细胞来源外泌体火山图(a),前5个miRNA分子热图(b)以及qPCR验证前5个miRNA分子在外泌体中的表达差异(c)注:***P<0.001,nsP>0.05
图5 转染miR-424-3p质粒以及不同来源的外泌体对PC3细胞增殖实验(a)、侵袭实验(b~c)和划痕实验(d~e)注:与PC3+miRNA NC组相比,***P<0.001
[1]
Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022 [J]. CA Cancer J Clin, 2022, 72(1): 7-33.
[2]
Kang J, La Manna F, Bonollo F, et al. Tumor microenvironment mechanisms and bone metastatic disease progression of prostate cancer [J]. Cancer letters, 2022, 530: 156-69.
[3]
Park SH, Keller ET, Shiozawa Y. Bone marrow microenvironment as a regulator and therapeutic target for prostate cancer bone metastasis [J]. Calcif Tissue Int, 2018, 102(2): 152-62.
[4]
王欣文, 陈波, 李国兵, 等. RNF187在前列腺癌细胞中的表达及其对前列腺癌细胞增殖、侵袭的影响[J]. 新医学, 2023, 54(7): 480-486
[5]
Mcloughlin LC, O'kelly F, O'brien C, et al. The improved accuracy of planar bone scintigraphy by adding single photon emission computed tomography (spect-ct) to detect skeletal metastases from prostate cancer [J]. Ir J Med Sci, 2016, 185(1): 101-105.
[6]
Azad GK, Taylor B, Rubello D, et al. Molecular and functional imaging of bone metastases in breast and prostate cancers: an overview [J]. Clin Nucl Med, 2016, 41(1): e44-50.
[7]
Arscott WT, Tandle AT, Zhao S, et al. Ionizing radiation and glioblastoma exosomes: implications in tumor biology and cell migration [J]. Transl Oncol, 2013, 6(6): 638-648.
[8]
李钧, 童哲, 魏勇, 等. Mir-125b靶向smad4调控非创伤性股骨头坏死骨髓基质干细胞成骨分化与增殖的相关性[J].中国老年学杂志, 2017, 37(2): 306-308.
[9]
孙珂焕, 朱晓峰, 杨丽, 等. 骨髓间充质干细胞外泌体在骨质疏松中的研究进展[J]. 中国骨质疏松杂志, 2019, 25(3): 393-398+415.
[10]
Yin L, Jiang LP, Shen QS, et al. Ncaph plays important roles in human colon cancer [J]. Cell Death Dis, 2017, 8(3): e2680.
[11]
Kobayashi T. Editorial comment to micro-ribonucleic acid expression signature of metastatic castration-resistant prostate cancer: regulation of ncaph by antitumor mir-199a/b-3p [J]. Int J Urol, 2019, 26(4): 521.
[12]
Jiang S, Chen H, He K, et al. Human bone marrow mesenchymal stem cells-derived exosomes attenuated prostate cancer progression via the mir-99b-5p/igf1r axis [J]. Bioengineered, 2022, 13(2): 2004-2016.
[13]
Hu L, Xie X, Xue H, et al. Mir-1224-5p modulates osteogenesis by coordinating osteoblast/osteoclast differentiation via the rap1 signaling target adcy2 [J]. Exp Mol Med, 2022, 54(7): 961-72.
[14]
Li SL, An N, Liu B, et al. Exosomes from lncap cells promote osteoblast activity through mir-375 transfer [J]. Oncol Lett, 2019, 17(5): 4463-4473.
[15]
Yu L, Sui B, Fan W, et al. Exosomes derived from osteogenic tumor activate osteoclast differentiation and concurrently inhibit osteogenesis by transferring col1a1-targeting mirna-92a-1-5p [J]. J Extracell Vesicles, 2021, 10(3): e12056.
[16]
Zhang X, Sai B, Wang F, et al. Hypoxic bmsc-derived exosomal mirnas promote metastasis of lung cancer cells via stat3-induced emt [J]. Mol Cancer, 2019, 18(1): 40.
[17]
Jiang D, Wu X, Sun X, et al. Bone mesenchymal stem cell-derived exosomal microrna-7-5p inhibits progression of acute myeloid leukemia by targeting osbpl11 [J]. J Nanobiotechnology, 2022, 20(1): 29.
[18]
Amin AH, Sharifi LMA, Kakhharov AJ, et al. Role of acute myeloid leukemia (aml)-derived exosomes in tumor progression and survival [J]. Biomed Pharmacother, 2022, 150: 113009.
[19]
Jiang S, Mo C, Guo S, et al. Human bone marrow mesenchymal stem cells-derived microRNA-205-containing exosomes impede the progression of prostate cancer through suppression of RHPH2 [J].J Exp Clin Cancer Res, 2019, 38(1): 495.
[20]
Chen HL, Li JJ, Jiang F, et al. Microrna-4461 derived from bone marrow mesenchymal stem cell exosomes inhibits tumorigenesis by downregulating copb2 expression in colorectal cancer [J]. Biosci Biotechnol Biochem, 2020, 84(2): 338-346.
[21]
Fu D, Liu B, Jiang H, et al. Bone marrow mesenchymal stem cells-derived exosomal microrna-19b-1-5p reduces proliferation and raises apoptosis of bladder cancer cells via targeting abl2 [J]. Genomics, 2021, 113(3): 1338-1348.
[22]
Zhen G, Wen C, Jia X, et al. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis [J]. Nat Med, 2013, 19(6): 704-12.
[23]
Diaz G, Melis M, Tice A, et al. Identification of micrornas specifically expressed in hepatitis c virus-associated hepatocellular carcinoma [J]. Int J Cancer, 2013, 133(4): 816-824.
[24]
Azzoni C, Bottarelli L, Pizzi S, et al. Xq25 and xq26 identify the common minimal deletion region in malignant gastroenteropancreatic endocrine carcinomas [J]. Virchows Arch, 2006, 448(2): 119-126.
[25]
Liu W, Gong Q, Ling J, et al. Role of mir-424 on angiogenic potential in human dental pulp cells [J]. J Endod, 2014, 40(1): 76-82.
[26]
Shen X, Tang J, Hu J, et al. Mir-424 regulates monocytic differentiation of human leukemia u937 cells by directly targeting cdx2 [J]. Biotechnol Lett, 2013, 35(11): 1799-806.
[27]
Long XH, Mao JH, Peng AF, et al. Tumor suppressive microrna-424 inhibits osteosarcoma cell migration and invasion via targeting fatty acid synthase [J]. Exp Ther Med, 2013, 5(4): 1048-1052.
[28]
Chen B, Duan L, Yin G, et al. Simultaneously expressed mir-424 and mir-381 synergistically suppress the proliferation and survival of renal cancer cells-cdc2 activity is up-regulated by targeting wee1 [J]. Clinics (Sao Paulo), 2013, 68(6): 825-833.
[29]
Zhang M, Zeng J, Zhao Z, et al. Loss of mir-424-3p, not mir-424-5p, confers chemoresistance through targeting yap1 in non-small cell lung cancer [J]. Mol Carcinog, 2017, 56(3): 821-832.
[30]
Bieg D, Sypniewski D, Nowak E, et al. Mir-424-3p suppresses galectin-3 expression and sensitizes ovarian cancer cells to cisplatin [J]. Arch Gynecol Obstet, 2019, 299(4): 1077-1087.
[31]
Lu C, Wang H, Chen S, et al. Baicalein inhibits cell growth and increases cisplatin sensitivity of a549 and h460 cells via mir-424-3p and targeting pten/pi3k/akt pathway [J]. J Cell Mol Med, 2018, 22(4): 2478-2487.
[32]
Richardsen E, Andersen S, Al-saad S, et al. Low expression of mir-424-3p is highly correlated with clinical failure in prostate cancer [J]. Scientific reports, 2019, 9(1): 10662.
[1] 李辉, 尉维录, 吴茂林. 经直肠剪切波弹性成像对存在下尿路症状的前列腺病变良恶性的鉴别诊断价值及其影响因素分析[J]. 中华医学超声杂志(电子版), 2023, 20(11): 1193-1198.
[2] 方晔, 谢晓红, 罗辉. 品管圈在提高前列腺癌穿刺检出率中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(07): 722-727.
[3] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[4] 李俊涛, 张天佑, 叶雷, 郭强, 吴坚坚, 尧冰, 王德娟, 邱剑光. 保留"尿道系膜"的腹腔镜下前列腺根治性切除术后尿控情况的研究[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 19-24.
[5] 张琳, 吴波, 王东文. 前列腺癌特异性近红外荧光探针的研究进展与展望[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 6-11.
[6] 李全喜, 唐辉军, 张健生, 杨飞. 基于MUSE-DWI与SS-DWI技术在前列腺癌图像中的对比研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 553-557.
[7] 梅津熠, 王燕, 瞿旻, 董振阳, 周增辉, 沈显琦, 李嘉伦, 高旭. 机器人前列腺癌根治术中"膀胱外中叶"的处理[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 429-433.
[8] 王志鹏, 张倩, 黄燕华, 孙赟, 方晓明, 施宇佳. 肺鳞癌血清外泌体hsa_circ_0018430的表达和临床意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(06): 774-778.
[9] 闫卫国, 姜颖, 李叶. 血清外泌体circ-BPTF对COPD急性加重期预后分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(06): 818-821.
[10] 康华利, 张继航. 非小细胞肺癌生物标志物血小板及来源外泌体研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 731-733.
[11] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[12] 胡欣欣, 孟晓凡, 郭兆安. 高血压肾病的发病机制研究进展[J]. 中华肾病研究电子杂志, 2023, 12(06): 339-343.
[13] 孙昕, 程海波, 沈卫星. 基于全转录组学探讨仙连解毒方治疗Ⅲ期结直肠癌患者的疗效机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 277-283.
[14] 张可, 闫琳琳, 王鹏飞, 章秀林, 赵帆, 胡守奎. 外泌体环状RNA在肿瘤免疫和癌症免疫治疗中的作用[J]. 中华临床医师杂志(电子版), 2023, 17(10): 1102-1108.
[15] 王苏贵, 皇立媛, 姜福金, 吴自余, 张先云, 李强, 严大理. 异质性细胞核核糖蛋白A2B1在前列腺癌中的作用及其靶向中药活性成分筛选研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 731-736.
阅读次数
全文


摘要