[1] |
Colicelli J. Human RAS superfamily proteins and related GTPases [J]. Sci STKE, 2004, 2004(250): Re13.
|
[2] |
Perucho M, Goldfarb M, Shimizu K, et al. Human-tumor-derived cell lines contain common and different transforming genes [J]. Cell, 1981, 27(3 Pt 2): 467-476.
|
[3] |
Oxford G, Theodorescu D. The role of RAS superfamily proteins in bladder cancer progression [J]. J Urol, 2003, 170(5): 1987-1993.
|
[4] |
Goecks J, Jalili V, Heiser LM, et al. How machine learning will transform biomedicine [J]. Cell, 2020, 181(1): 92-101.
|
[5] |
Ming C, Viassolo V, Probst-Hensch N, et al. Machine learning-based lifetime breast cancer risk reclassification compared with the BOADICEA model: impact on screening recommendations [J]. Br J Cancer, 2020, 123(5): 860-867.
|
[6] |
Kent WJ, Sugnet CW, Furey TS, et al. The human genome browser at UCSC [J]. Genome Res, 2002, 12(6): 996-1006.
|
[7] |
Sjödahl G, Lauss M, Lövgren K, et al. A molecular taxonomy for urothelial carcinoma [J]. Clin Cancer Res, 2012, 18(12): 3377-3386.
|
[8] |
Lee HW, Chung W, Lee HO, et al. Single-cell RNA sequencing reveals the tumor microenvironment and facilitates strategic choices to circumvent treatment failure in a chemorefractory bladder cancer patient [J]. Genome Med, 2020, 12(1): 47.
|
[9] |
Mariathasan S, Turley SJ, Nickles D, et al. TGF β attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells [J]. Nature, 2018, 554(7693): 544-548.
|
[10] |
Chen B, Khodadoust MS, Liu CL, et al. Profiling tumor infiltrating immune cells with CIBERSORT [J]. Methods Mol Biol, 2018, 1711: 243-259.
|
[11] |
Ru B, Wong CN, Tong Y, et al. TISIDB: an integrated repository portal for tumor-immune system interactions [J]. Bioinformatics, 2019, 35(20): 4200-4202.
|
[12] |
Kaufman DS, Shipley WU, Feldman AS. Bladder cancer [J]. Lancet, 2009, 374(9685): 239-249.
|
[13] |
Bellmunt J, de Wit R, Vaughn DJ, et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma [J]. N Engl J Med, 2017, 376(11): 1015-1026.
|
[14] |
Powles T, Park SH, Voog E, et al. Avelumab maintenance therapy for advanced or metastatic urothelial carcinoma [J]. N Engl J Med, 2020, 383(13): 1218-1230.
|
[15] |
Bernal Astrain G, Nikolova M, Smith MJ. Functional diversity in the RAS subfamily of small GTPases [J]. Biochem Soc Trans, 2022, 50(2): 921-933.
|
[16] |
Zhang J, Lodish HF. Constitutive activation of the MEK/ERK pathway mediates all effects of oncogenic H-ras expression in primary erythroid progenitors [J]. Blood, 2004, 104(6): 1679-1687.
|
[17] |
Thomas J, Sonpavde G. Molecularly targeted therapy towards genetic alterations in advanced bladder cancer [J]. Cancers (Basel), 2022, 14(7): 1795.
|
[18] |
Biswas PK, Kwak Y, Kim A, et al. TTYH3 modulates bladder cancer proliferation and metastasis via FGFR1/H-Ras/A-Raf/MEK/ERK pathway [J]. Int J Mol Sci, 2022, 23(18): 10496.
|
[19] |
Zhou X, Qiu G, Yang Y, et al. Circ_0001955 promotes non-small cell lung cancer cell proliferation and invasion by regulating MiR-29a-3p/NKIRAS2 axis to activate the nuclear factor-κB pathway [J]. Pathol Int, 2023, 73(9): 434-443.
|
[20] |
Coelho MA, de Carné Trécesson S, Rana S, et al. Oncogenic RAS signaling promotes tumor immunoresistance by stabilizing PD-L1 mRNA [J]. Immunity, 2017, 47(6): 1083-99.e6.
|
[21] |
Wang HY, Wu XY, Zhang X, et al. Prevalence of NRAS mutation, PD-L1 expression and amplification, and overall survival analysis in 36 primary vaginal melanomas [J]. Oncologist, 2020, 25(2): e291-e301.
|
[22] |
Bodhale N, Nair A, Saha B. Isoform-specific functions of Ras in T-cell development and differentiation [J]. Eur J Immunol, 2023, 53(7): e2350430.
|
[23] |
Cao Y, Liang W, Fang L, et al. PD-L1/PD-L1 signalling promotes colorectal cancer cell migration ability through RAS/MEK/ERK [J]. Clin Exp Pharmacol Physiol, 2022, 49(12): 1281-1293.
|
[24] |
Gao C, Chen J, Bai J, et al. High glucose-upregulated PD-L1 expression through RAS signaling-driven downregulation of PTRH1 leads to suppression of T cell cytotoxic function in tumor environment [J]. J Transl Med, 2023, 21(1): 461.
|
[25] |
Chen JX, Chen DM, Wang D, et al. METTL3/YTHDF2 m6A axis promotes the malignant progression of bladder cancer by epigenetically suppressing RRAS [J]. Oncol Rep, 2023, 49(5): 94.
|
[26] |
Zhao A, Li D, Mao X, et al. GNG2 acts as a tumor suppressor in breast cancer through stimulating MRAS signaling [J]. Cell Death Dis, 2022, 13(3): 260.
|
[27] |
Handelman GS, Kok HK, Chandra RV, et al. eDoctor: machine learning and the future of medicine [J]. J Intern Med, 2018, 284(6): 603-619.
|
[28] |
Zhang M, Liu Y, Yao J, et al. Value of machine learning-based transrectal multimodal ultrasound combined with PSA-related indicators in the diagnosis of clinically significant prostate cancer [J]. Front Endocrinol (Lausanne), 2023, 14: 1137322.
|
[29] |
Feld E, Harton J, Meropol NJ, et al. Effectiveness of first-line immune checkpoint blockade versus carboplatin-based chemotherapy for metastatic urothelial cancer [J]. Eur Urol, 2019, 76(4): 524-532.
|
[30] |
Sonpavde G, Dranitsaris G, Necchi A. Improving the cost efficiency of PD-1/PD-L1 inhibitors for advanced urothelial carcinoma: a major role for precision medicine? [J]. Eur Urol, 2018, 74(1): 63-65.
|
[31] |
Deng X, Li T, Mo L, et al. Machine learning model for the prediction of prostate cancer in patients with low prostate-specific antigen levels: a multicenter retrospective analysis [J]. Front Oncol, 2022, 12:985940.
|
[32] |
Fu Y, Liu K, Jiang X, et al. Hsa_circ_0008035 knockdown inhibits bladder cancer progression through miR-1184/RAP2B axis [J]. Urol Int, 2023, 107(6): 632-645.
|
[33] |
Xiong Y, Huang H, Chen S, et al. ERK5-regulated RERG expression promotes cancer progression in prostatic carcinoma [J]. Oncol Rep, 2019, 41(2): 1160-1168.
|