切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2024, Vol. 18 ›› Issue (03) : 243 -248. doi: 10.3877/cma.j.issn.1674-3253.2024.03.008

临床研究

纤维蛋白原与白蛋白比值及其列线图模型对非肌层浸润性膀胱癌患者电切术后复发的预测价值
魏微阳1, 杨浩1, 周川鹏1, 王奇1, 黄红星2, 黄亚强2,()   
  1. 1. 524000 湛江,广东医科大学
    2. 528400 广东医科大学附属中山市人民医院泌尿外科
  • 收稿日期:2024-02-18 出版日期:2024-06-01
  • 通信作者: 黄亚强
  • 基金资助:
    广东省中山市科技计划项目(2019B1062)

The value of fibrinogen to albumin ratio and its nomogram model in predicting the recurrence of non-muscle invasive bladder tumor after transurethral resection

Weiyang Wei1, Hao Yang1, Chuanpeng Zhou1, Qi Wang1, Hongxing Huang2, Yaqiang Huang2,()   

  1. 1. Guangdong Medical University, Zhanjiang 524000, China
    2. Department of Urology, Zhongshan City People's Hospital Affiliated to Guangdong Medical University, Guangdong 528400, China
  • Received:2024-02-18 Published:2024-06-01
  • Corresponding author: Yaqiang Huang
引用本文:

魏微阳, 杨浩, 周川鹏, 王奇, 黄红星, 黄亚强. 纤维蛋白原与白蛋白比值及其列线图模型对非肌层浸润性膀胱癌患者电切术后复发的预测价值[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 243-248.

Weiyang Wei, Hao Yang, Chuanpeng Zhou, Qi Wang, Hongxing Huang, Yaqiang Huang. The value of fibrinogen to albumin ratio and its nomogram model in predicting the recurrence of non-muscle invasive bladder tumor after transurethral resection[J]. Chinese Journal of Endourology(Electronic Edition), 2024, 18(03): 243-248.

目的

探究术前纤维蛋白原与白蛋白比值(FAR)在预测非肌层浸润性膀胱癌(NMIBC)患者TURBT术后复发中的价值,基于FAR构建预测NMIBC患者TURBT术后复发的列线图(nomogram)模型并验证。

方法

回顾性收集2016年9月至2021年12月在广东医科大学附属中山市人民医院诊治的162例NMIBC患者临床资料,使用Cox回归模型筛选NMIBC患者术后复发的独立危险因素并构建nomogram模型。

结果

术前低FAR组患者的无复生存率优于术前高FAR组(P<0.05),且两组在肿瘤数目、病理分级方面差异具有统计学意义(P<0.05)。术前高FAR、肿瘤数量≥8个、临床T1分期、病理高分级是患者NMIBC复发的独立危险因素(P<0.05),由以上4个因素构建的nomogram模型预测NMIBC患者TURBT术后1年、3年、5年无复发生存率的ROC曲线下面积分别为0.87(95%CI:0.81~0.94)、0.80(95%CI:0.70~0.89)、0.73(95%CI:0.56~0.89)。在术后1年、3年、5年,nomogram模型(临床T分期+病理分级+肿瘤数目+FAR)整体临床获益均高于无FAR因素模型(临床T分期+病理分级+肿瘤数目)。

结论

术前高FAR是NMIBC患者TURBT术后复发的独立危险因素,基于FAR构建的nomogram模型可为NMIBC患者TURBT术后的后续治疗及拟定个体化随访方案提供理论依据,在一定程度上指导临床实践。

Objective

To explore the value of preoperative fibrinogen to albumin ratio (FAR) in predicting postoperative recurrence in NMIBC patients after transurethral resection of bladder tumor (TURBT), and to construct a nomogram model for predicting postoperative recurrence in NMIBC patients based on FAR.

Methods

Clinical data from 162 NMIBC patients treated at Zhongshan City People's Hospital Affiliated to Guangdong Medical University from September 2016 to December 2021 was retrospectively analyzed. Cox regression model was used to screen for independent risk factors for postoperative recurrence in NMIBC patients and a nomogram model was constructed.

Results

The no recurrence survival rate of patients in the preoperative low FAR group was better than that in the preoperative high FAR group (P<0.05), and there was a statistically significant difference in tumor number and pathological grading between the two groups (P<0.05). Preoperative high FAR, number of tumors ≥8, clinical T1 stage, and high pathological grade are independent risk factors for recurrence in patients (P<0.05). The nomogram model constructed from the above four factors predicts the ROC area under the curve for 1 year, 3 year, and 5 year recurrence free survival in NMIBC patients after TURBT, with ROC values of 0.87 (95%CI:0.81-0.94), 0.80 (95%CI:0.70-0.89), and 0.73 (95%CI:0.56-0.89), respectively. At 1 year, 3 years, and 5 years after surgery, the overall clinical benefits of the nomogram model (clinical T stage+pathological grade+number of tumors+FAR) were higher than those of the non FAR factor model (clinical T stage+pathological grade+number of tumors).

Conclusions

Preoperative high FAR is an independent risk factor for postoperative recurrence in NMIBC patients undergoing TURBT. The nomogram model constructed based on FAR can provide theoretical basis for the subsequent treatment of NMIBC patients undergoing TURBT and the formulation of personalized follow-up plans, guiding clinical practice to a certain extent.

图1 FAR预测术后复发的ROC曲线图(a)、术前FAR与患者无复发生存期的关系(b)注:FAR为纤维蛋白原与白蛋白比值
表1 162例非肌层浸润性膀胱癌患者临床资料及病理特征分析[例(%)]
表2 非肌层浸润性膀胱癌患者复发的Cox回归单因素及多因素分析
图2 由肿瘤数目、临床T分期、病理分级、术前FAR构建的非肌层浸润性膀胱癌患者术后无复发生存率列线图模型
图3 由肿瘤数目、临床T分期、病理分级、术前FAR构建的非肌层浸润性膀胱癌患者术后无复发生存率列线图模型预测效能的ROC曲线及内部验证注:a为列线图模型预测患者术后1、3、5年无复发生存率的ROC曲线;b为列线图模型的校准图;FAR为纤维蛋白原与白蛋白比值
图4 由肿瘤数目、临床T分期、病理分级、术前FAR构建的非肌层浸润性膀胱癌患者术后无复发生存率列线图模型和由临床T分期、病理分级、肿瘤数目构建的model 2模型预测术后1年(a)、3年(b)、5年(c)年无复发生存率临床获益分析
[1]
李海涛,田军,王东文, 等. 2014年中国肿瘤登记点大陆地区膀胱癌发病率差异分析 [J]. 现代泌尿生殖肿瘤杂志, 2023, 15 (3): 139-143.
[2]
Garg T, Connors JN, Ladd IG, et al. Defining priorities to improve patient experience in non-muscle invasive bladder cancer[J]. Bladder Cancer, 2018, 4(1): 121-128.
[3]
Wang Z, Gao W, Li J, et al. Development and validation of a novel recurrence risk stratification for initial non-muscle invasive bladder cancer in the Han Chinese population[J]. J Cancer, 2020, 11(7): 1668-1678.
[4]
Babjuk M, Böhle A, Burger M, et al. EAU guidelines on non-muscle-invasive urothelial car-cinoma of the bladder: update 2016[J]. Eur Urol, 2017, 71(3): 447-461.
[5]
Kim HS, Jeong CW, Kwak C, et al. Novel nomograms to predict recurrence and progression in primary non-muscle-invasive bladder cancer: validation of predictive efficacy in comparison with European Organization of Research and Treatment of Cancer scoring system[J]. World J Urol, 2019, 37(9): 1867-1877.
[6]
赵静, 石志浩, 苏芳, 等. 外周血纤维蛋白原与白蛋白比值预测晚期非小细胞肺癌一线化疗疗效的价值 [J]. 热带医学杂志, 2023, 23 (9): 1188-1192.
[7]
Matsuda S, Takeuchi H, Kawakubo H, et al. Validation study of fibrinogen and albumin score in esophageal cancer patients who underwent esophagectomy: multicenter prospective cohort study[J]. Ann Surg Oncol, 2021, 28(2): 774-784.
[8]
Wang Y, Chen W, Hu C, et al. Albumin and fibrinogen combined prognostic grade predicts prognosis of patients with prostate cancer[J]. J Cancer, 2017, 8(19): 3992-4001.
[9]
马平, 褚锋. 血浆血栓弹力图与纤维蛋白原及D-二聚体检测对恶性肿瘤患者凝血功能评估的临床价值[J]. 现代检验医学杂志, 2020, 35(2): 72-75.
[10]
Zhang D, Zhou X, Bao W, et al. Plasma fibrinogen levels are correlated with postoperative distant metastasis and prognosis in esophageal squamous cell carcinoma[J]. Oncotarget, 2015, 6(35): 38410-38420.
[11]
Dolan RD, McSorley ST, Horgan PG, et al. The role of the systemic inflammatory response in predicting outcomes in patients with advanced inoperable cancer: systematic review and meta-analysis[J]. Crit Rev Oncol Hematol, 2017, 116: 134-146.
[12]
张鹏, 韩从辉, 刘大闯. 血浆FIB与前列腺癌关系的研究进展[J]. 新医学, 2023, 54(10): 708-711.
[13]
Sharma BK, Mureb D, Murab S, et al. Fibrinogen activates focal adhesion kinase (FAK) promoting colorectal adenocarcinoma growth[J]. J Thromb Haemost, 2021, 19(10): 2480-2494.
[14]
Loftus TJ, Brown MP, Slish JH, et al. Serum levels of prealbumin and albumin for preoper-ative risk stratification[J]. Nutr Clin Pract, 2019, 34(3): 340-348.
[15]
李小峰, 王玺, 卢文杰, 等. 冠状动脉慢性完全闭塞患者纤维蛋白原/白蛋白比值与冠状动脉侧支循环形成的关系[J]. 河南医学研究, 2020, 29(4): 589-592.
[16]
Miao Y, Li S, Yan Q, et al. Prognostic significance of preoperative prognostic nutritional index in epithelial ovarian cancer patients treated with platinum-based chemotherapy[J]. Oncol Res Treat, 2016, 39(11): 712-719.
[17]
Deme D, Telekes A. Prognostic importance of albumin in oncology[J]. Orv Hetil, 2018, 159(3): 96-106.
[18]
Cook WH, Baker JF. Retrospective evaluation of prognostic factors in metastatic spine disease: serum albumin and primary tumour type are key[J]. ANZ J Surg, 2020, 90(6): 1070-1074.
[19]
Cao X, Cui J, Yu T, et al. Fibrinogen/albumin ratio index is an independent prognosis pre-dictor of recurrence-free survival in patients after surgical resection of gastrointestinal stromal tumors[J]. Front Oncol, 2020, 10: 1459.
[20]
Yang Z, Zheng Y, Wu Z, et al. Association between pre-diagnostic serum albumin and cancer risk: results from a prospective population-based study[J]. Cancer Med, 2021, 10(12): 4054-4065.
[21]
McGettrick AF, O’Neill LAJ. The role of HIF in immunity and inflammation[J]. Cell Metab, 2020, 32(4): 524-536.
[22]
Lu S, Liu Z, Zhou X, et al. Preoperative fibrinogen-albumin ratio index (FARI) is a reliable prognosis and chemoradiotherapy sensitivity predictor in locally advanced rectal cancer pa-tients undergoing radical surgery following neoadjuvant chemoradiotherapy[J]. Cancer Manag Res, 2020, 12: 8555-8568.
[23]
Diakos CI, Charles KA, McMillan DC, et al. Cancer-related inflammation and treatment effectiveness[J]. Lancet Oncol, 2014, 15(11): e493-e503.
[24]
Xu Q, Yan Y, Gu S, et al. A novel inflammation-based prognostic score: the fibrino-gen/albumin ratio predicts prognoses of patients after curative resection for hepatocellular carcinoma[J]. J Immunol Res, 2018, 2018: 4925498.
[25]
Wang YY, Liu ZZ, Xu D, et al. Fibrinogen-albumin ratio index (FARI): a more promising inflammation-based prognostic marker for patients undergoing hepatectomy for colorectal liver metastases[J]. Ann Surg Oncol, 2019, 26(11): 3682-3692.
[26]
Liang Y, Wang W, Que Y, et al. Prognostic value of the fibrinogen/albumin ratio (FAR) in patients with operable soft tissue sarcoma[J]. BMC Cancer, 2018, 18(1): 942.
[1] 刘安阳, 于俊平, 白熠洲, 赵培俍, 田金翌, 罗斌. 选择性残腔切削边缘法在乳腺癌保留乳房手术中的应用[J]. 中华乳腺病杂志(电子版), 2024, 18(02): 102-108.
[2] 王晓梅, 刘冰, 马丽琼, 卢祖静, 苗建军. 基于LASSO-Cox回归分析的非轻症急性胰腺炎死亡风险列线图预测模型的建立和临床应用效果分析[J]. 中华普通外科学文献(电子版), 2024, 18(01): 44-50.
[3] 蔡大明, 陆晓峰, 王行舟, 王萌, 刘颂, 夏雪峰, 沈晓菲, 杜峻峰, 管文贤. 三级淋巴结构在胃神经内分泌瘤中的预后价值及预后预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 401-405.
[4] 达热拜·热达提, 刘林, 赵为民, 孟涛, 雷程, 金博, 毕建军, 李新宇, 王海江. 中低位直肠癌新辅助放化疗后侧方淋巴结清扫术的临床观察[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 415-418.
[5] 宫向良, 刘征, 丁梅. 基于膜解剖D2+CME根治术治疗胃癌的近中期随访研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 267-270.
[6] 张阳, 纽燕娜, 常丽蓉, 唐国华, 赵萍. ERAS理念下肝棘球蚴病术后并发症风险预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 287-290.
[7] 朱显钟, 李金雨, 于忠英, 温路生. 淋巴结平均直径与无淋巴结转移肾癌病理特征及预后关系研究[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 146-151.
[8] 王浩, 王卓, 王琦, 高金莉, 田新涛, 张文元, 蒋文惠, 陆佳荪, 杨国胜, 温机灵. 经尿道激光操作架直视推拨法铥激光整块切除术治疗非肌层浸润性膀胱癌的初步经验[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 31-35.
[9] 王虞鹭, 代京, 程文悦, 徐隽雅, 张剑. 体外和比格犬体内评价腹内压致生物补片分层及疝复发风险的研究[J]. 中华疝和腹壁外科杂志(电子版), 2024, 18(02): 146-153.
[10] 赵家劲, 谢肖俊. 复发性腹壁切口疝的研究进展[J]. 中华疝和腹壁外科杂志(电子版), 2024, 18(01): 21-24.
[11] 钟造茂, 罗文超, 蔡满航, 陈显育, 钟跃思. 肝癌肝切除术后肝衰竭的危险因素分析及列线图模型构建[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 289-295.
[12] 杨竞, 周光文. 肝硬化门静脉高压症治疗后再出血危险因素分析及预测模型构建[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 296-301.
[13] 袁梦晨, 刘译阳, 赵帅, 陈林, 高宇, 肖晓燕, 尤亚茹, 梁何俊, 高剑波. 增强CT的列线图在鉴别EB病毒相关的胃淋巴上皮瘤样癌与胃腺癌中的应用[J]. 中华消化病与影像杂志(电子版), 2024, 14(02): 107-113.
[14] 江浩, 余宏圣, 杨碧兰, 阿布都克尤木·斯马依, 吴斌, 杨逸冬. 基于列线图模型对慢性乙型肝炎合并肝脏脂肪变性患者并发晚期肝纤维化的临床预测[J]. 中华消化病与影像杂志(电子版), 2024, 14(02): 114-120.
[15] 邓仙裕, 罗钰璇, 张溱乐, 余展鹏, 彭亮. 自发性脑出血重症患者30 d死亡风险预测模型的建立及验证[J]. 中华脑血管病杂志(电子版), 2024, 18(02): 121-128.
阅读次数
全文


摘要