切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2024, Vol. 18 ›› Issue (05) : 503 -508. doi: 10.3877/cma.j.issn.1674-3253.2024.05.014

实验研究

EGFR-MEK-TZ三联合分子的构建及其对去势抵抗性前列腺癌细胞增殖与凋亡的影响
郑俊1, 吴杰英2,(), 谭海波3, 郑安全3, 李腾成2   
  1. 1. 510630 广州,中山大学附属第三医院肝脏外科
    2. 510630 广州,中山大学附属第三医院泌尿外科
    3. 510650 广州,中国科学院华南植物园
  • 收稿日期:2023-10-09 出版日期:2024-10-01
  • 通信作者: 吴杰英
  • 基金资助:
    广东省自然科学基金(2018A030313261)

Construction of EGFR-MEK-TZ combined molecules and it's effects on proliferation and apoptosis of castration-resistant prostate cancer cells

Jun Zheng1, Jieying Wu2,(), Haibo Tan3, Anquan Zheng3, Tengcheng Li2   

  1. 1. Department of Hepatic Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
    2. Department of Urology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
    3. Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
  • Received:2023-10-09 Published:2024-10-01
  • Corresponding author: Jieying Wu
引用本文:

郑俊, 吴杰英, 谭海波, 郑安全, 李腾成. EGFR-MEK-TZ三联合分子的构建及其对去势抵抗性前列腺癌细胞增殖与凋亡的影响[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 503-508.

Jun Zheng, Jieying Wu, Haibo Tan, Anquan Zheng, Tengcheng Li. Construction of EGFR-MEK-TZ combined molecules and it's effects on proliferation and apoptosis of castration-resistant prostate cancer cells[J]. Chinese Journal of Endourology(Electronic Edition), 2024, 18(05): 503-508.

目的

构建EGFR-MEK-TZ三联合靶向分子LN-1,探讨其对去势抵抗性前列腺癌细胞的作用。

方法

设计LN-1的分子结构,并据此展开药物分子合成步骤的研究。以去势抵抗性前列腺癌细胞株LNCap和PC3作为研究对象,分别分为实验组和对照组,前者为LN-1处理组(50 mmol)。利用细胞技术试剂盒CCK-8法、克隆形成实验和EdU荧光染色法检测LN-1对LNCap和PC3细胞增殖活性的影响,采用RT-qPCR法检测各组去势抵抗性前列腺癌细胞中凋亡相关基因的表达水平。

结果

设计的LN-1分子由EGFR片段、MEK片段和TZ烷基化片段三个活性片段通过二乙醇胺片段相互连接构成,并且EGFR片段、MEK片段通过碳酸酯酰胺键进行偶联。以MEK片段作为起始原料,获得43.3%产率的目标产物LN-1。LN-1可有效抑制LNCap和PC3肿瘤细胞的增殖活性(P<0.05)。此外,Caspase-3、p53和Bax mRNA水平在实验组明显较对照组升高,差异有统计学意义(P<0.05)。

结论

EGFR-MEK-TZ三联合靶向分子LN-1的成功构建提示该分子结构设计的合理性和可行性,其可通过抑制去势抵抗性前列腺癌细胞LNCap和PC3的增殖,并诱导其凋亡,从而发挥抗肿瘤作用。

Objective

To construct EGFR-MEK-TZ three combined targeting molecule LN-1 and investigate its effect on castration-resistant prostate cancer cells.

Methods

The molecular structure of LN-1 was designed and the steps of molecule synthesis were studied accordingly. Castration-resistant prostate cancer cells PC3 and LNCap were studied, then experimental group and control group were divided, respectively. The experimental group was treated with LN-1. The effects of LN-1 on the proliferative activity of PC3 and LNCap cells were detected by CCK-8 assay, clonal formation assay and EdU fluorescence staining. The expression levels of apoptosis-related genes in castration-resistant prostate cancer cells in each group were detected by RT-qPCR.

Results

The designed LN-1 molecule was composed of three active fragments: EGFR fragment, MEK fragment and alkylation fragment TZ, which were interlinked with each other through diethanolamine fragment. EGFR fragment and MEK fragment were coupled through carbonate amide bond. Using MEK fragment as starting material, the target product LN-1 with 43.3% yield was obtained. LN-1 effectively inhibited the proliferative activity of PC3 and LNCap cells (P<0.05). In addition, mRNA levels of Caspase-3, p53 and Bax in the experimental group were significantly higher than those in the control group, with significant difference (P<0.05).

Conclusions

The successful construction of EGFR-MEK-TZ three combined target molecule LN-1 suggests the rationality and feasibility of this molecular structure design, which can play an antitumor role by inhibiting proliferation and inducing apoptosis of castration-resistant prostate cancer cells PC3 and LNCap.

图1 三联合靶向分子(EGFR-MEK-TZ)LN-1设计的分子结构及各组成片段注:2为MEK片段,3为烷基化片段,4为EGFR片段,5为二乙醇胺片段(连接片段)
图2 三联合靶向分子(EGFR-MEK-TZ)LN-1合成步骤
表1 RT-PCR引物序列
图3 三联合靶向分子(EGFR-MEK-TZ)LN-1的分子结构图
图4 CCK-8试验显示LN-1抑制前列腺癌细胞增殖  图5 克隆形成实验显示LN-1抑制前列腺癌细胞增殖注:*P<0.05,LNCap和PC3细胞均为前列腺癌细胞
图6 EdU染色显示LN-1抑制前列腺癌细胞增殖  图7 RT-PCR试验显示LN-1诱导前列腺癌细胞凋亡注:*P<0.05
[1]
Sabbah DA, Hajjo R, Sweidan K. Review on epidermal growth factor receptor (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR inhibitors[J]. Curr Top Med Chem, 2020, 20(10): 815-834.
[2]
Yacoub A, McKinstry R, Hinman D, et al. Epidermal growth factor and ionizing radiation up-regulate the DNA repair genes XRCC1 and ERCC1 in DU145 and LNCaP prostate carcinoma through MAPK signaling[J]. Radiat Res, 2003, 159(4): 439-452.
[3]
Rajaram P, Chandra P, Ticku S, et al. Epidermal growth factor receptor: role in human cancer[J]. Indian J Dent Res, 2017, 28(6): 687-694.
[4]
Sigismund S, Avanzato D, Lanzetti L. Emerging functions of the EGFR in cancer[J]. Mol Oncol, 2018, 12(1): 3-20.
[5]
Cheng WL, Feng PH, Lee KY, et al. The Role of EREG/EGFR pathway in tumor progression[J].Int J Mol Sci, 2021, 22(23): 12828.
[6]
Wilson MA, Schuchter LM. Chemotherapy for melanoma[J]. Cancer Treat Res, 2016, 167: 209-229.
[7]
Baer JC, Freeman AA, Newlands ES, et al. Depletion of O6-alkylguanine-DNA alkyltransferase correlates with potentiation of temozolomide and CCNU toxicity in human tumour cells[J]. Br J Cancer, 1993, 67(6): 1299-1302.
[8]
Rabik CA, Njoku MC, Dolan ME. Inactivation of O6-alkylguanine DNA alkyltransferase as a means to enhance chemotherapy[J]. Cancer Treat Rev, 2006, 32(4): 261-276.
[9]
Zanchi C, Zuco V, Lanzi C, et al. Modulation of survival signaling pathways and persistence of the genotoxic stress as a basis for the synergistic interaction between the atypical retinoid ST1926 and the epidermal growth factor receptor inhibitor ZD1839[J]. Cancer Res, 2005, 65(6): 2364-2372.
[10]
Zuco V, Benedetti V, De Cesare M, et al. Sensitization of ovarian carcinoma cells to the atypical retinoid ST1926 by the histone deacetylase inhibitor, RC307: enhanced DNA damage response[J]. Int J Cancer, 2010, 126(5): 1246-1255.
[11]
Knight ZA, Lin H, Shokat KM. Targeting the cancer kinome through polypharmacology[J]. Nat Rev Cancer, 2010, 10(2): 130-137.
[12]
Qiu Q, Domarkas J, Banerjee R, et al. The combi-targeting concept: in vitro and in vivo fragmentation of a stable combi-nitrosourea engineered to interact with the epidermal growth factor receptor while remaining DNA reactive[J]. Clin Cancer Res, 2007, 13(1): 331-340.
[13]
Rachid Z, Brahimi F, Katsoulas A, et al. The combi-targeting concept: chemical dissection of the dual targeting properties of a series of "combi-triazenes"[J]. J Med Chem, 2003, 46(20): 4313-4321.
[14]
Fang YQ, Wu JY, Li TC, et al. Nanoparticle mediated chemotherapy of hormone refractory prostate cancer with a novel combi-molecule[J]. Am J Transl Res. 2015, 7(8): 1440-1449.
[15]
Fang YQ, Wu JY, Li TC, et al. Biological effects of novel "combi-targeting" molecule and its effect on DNA repair pathway in hormone-refractory prostate cancer[J]. Am J Cancer Res. 2015, 5(8): 2387-2395.
[16]
Larroque AL, Peori B, Williams C, et al. Synthesis of water soluble bis-triazenoquinazolines: an unusual predicted mode of binding to the epidermal growth factor receptor tyrosine kinase[J]. Chem Biol Drug Des, 2008, 71(4): 374-379.
[17]
Matheson SL, McNamee JP, Wang T, et al. The combi-targeting concept: dissection of the binary mechanism of action of the combi-triazene SMA41 in vitro and antitumor activity in vivo[J]. J Pharmacol Exp Ther, 2004, 311(3): 1163-1170.
[18]
Matheson SL, Brahimi F, Jean-Claude BJ. The combi-targetinG concept: intracellular fragmentation of the binary epidermal growth factor (EGFR)/DNA targeting "combi-triazene" SMA41[J]. Biochem Pharmacol, 2004, 67(6): 1131-1138.
[19]
Banerjee R, Huang Y, McNamee J P, et al. The combi-targeting concept: selective targeting of the epidermal growth factor receptor- and Her2-expressing cancer cells by the complex combi-molecule RB24[J]. J Pharmacol Exp Ther, 2010, 334(1): 9-20.
[20]
Banerjee R, Huang Y, Qiu Q, et al. The combi-targeting concept: mechanism of action of the pleiotropic combi-molecule RB24 and discovery of a novel cell signaling-based combination principle[J]. Cell Signal, 2011, 23(4): 630-640.
[1] 张刚, 秦勇, 黄超, 薛震, 吕松岑. 基于骨关节炎软骨细胞表型转化的新兴治疗靶点[J]. 中华关节外科杂志(电子版), 2024, 18(03): 352-362.
[2] 王帆, 余辉, 谢佳乐, 许焕焕, 马瑞, 依日夏提·艾海提, 许珂, 许鹏. 成纤维样滑膜细胞在类风湿关节炎发病机制中的作用[J]. 中华关节外科杂志(电子版), 2024, 18(02): 225-230.
[3] 孙鸿坤, 艾虹, 陈正. 内质网应激介导的牙周炎骨改建失衡的研究进展[J]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 211-218.
[4] 罗远杰, 杨靖梅, 孟姝, 敖逸博, 申道南. 槲皮素防治口腔疾病的研究进展[J]. 中华口腔医学研究杂志(电子版), 2024, 18(02): 117-122.
[5] 李雪, 韩萌萌, 冯雪园, 马宁. 人表皮生长因子受体2低表达乳腺癌的研究进展及挑战[J]. 中华普通外科学文献(电子版), 2024, 18(04): 308-312.
[6] 王岩, 钱宏阳, 朱寅杰, 董柏君, 潘家骅, 薛蔚. 机器人辅助单孔腹膜外根治性前列腺切除治疗高危前列腺癌的瘤控效果初探[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 435-440.
[7] 黄海, 程必盛, 黄健. 2024年欧洲泌尿外科学会年会:前列腺癌研究的前沿探索与未来趋势[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 202-207.
[8] 王永兴, 陈铭, 林灿彬, 何珊, 赵志敏, 黄家鹏, 李泓涛, 孟磊. 前列腺癌根治术后Hem-o-lok结扎夹突入膀胱致结石一例并文献复习[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 175-177.
[9] 杨静, 附舰, 康艳霞. 血浆ctDNA T790M突变和总代谢肿瘤体积对晚期EGFR突变NSCLC患者TKIs治疗及预后意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 379-384.
[10] 赵海燕, 靳海涛, 孔莺, 何瑞远. 血浆NGS-ctDNA对EGFR-TKIs治疗晚期NSCLC患者的预后意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 385-391.
[11] 李静静, 许金花, 吴国峰, 任亚俊, 张骞云. 伏美替尼一线治疗EGFR突变晚期NSCLC脑转移的临床分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 426-429.
[12] 季加翠, 孙春斌, 罗恩丽. 姜黄素通过调节NF-κB/NLRP3通路减轻LPS诱导小胶质细胞神经炎症损伤[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 193-203.
[13] 王颖, 吴德平, 刘煜, 刘国栋. miR-9-5p下调CXCR4减轻创伤性脑损伤大鼠的神经炎症和细胞凋亡[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 65-72.
[14] 李景德, 张保艳, 卢培刚, 李博. 法舒地尔对大鼠急性脊髓损伤后神经细胞凋亡和BCL-2蛋白表达水平的影响[J]. 中华神经创伤外科电子杂志, 2024, 10(02): 65-70.
[15] 郭昆, 杨晓峰, 李传明. 双切口双钢板内固定治疗SchatzkerⅣ型以上复杂胫骨平台骨折的安全性及中远期预后的影响[J]. 中华老年骨科与康复电子杂志, 2024, 10(03): 159-164.
阅读次数
全文


摘要