切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2025, Vol. 19 ›› Issue (05) : 558 -564. doi: 10.3877/cma.j.issn.1674-3253.2025.05.003

专家论坛

液体活检在前列腺癌进展监测中的研究进展
杨硕, 郭佳()   
  1. 430060 湖北,武汉大学人民医院泌尿外科
  • 收稿日期:2025-01-17 出版日期:2025-10-01
  • 通信作者: 郭佳
  • 基金资助:
    湖北省自然科学基金面上项目(2023AFB745)

Research progress of liquid biopsy in monitoring the progression of prostate cancer

Shuo Yang, Jia Guo()   

  1. Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
  • Received:2025-01-17 Published:2025-10-01
  • Corresponding author: Jia Guo
引用本文:

杨硕, 郭佳. 液体活检在前列腺癌进展监测中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 558-564.

Shuo Yang, Jia Guo. Research progress of liquid biopsy in monitoring the progression of prostate cancer[J/OL]. Chinese Journal of Endourology(Electronic Edition), 2025, 19(05): 558-564.

前列腺癌是男性泌尿生殖系统最常见的恶性肿瘤之一,近年来总体生存期的延长预示着前列腺癌进入了慢性疾病管理阶段。在长期的治疗管理过程中,实时动态监测前列腺癌的进展,根据诊断及时调整治疗策略,对于患者总体生存期的进一步延长意义重大。液体活检作为一种非侵入性检测方法,通过采集患者的血液、脑脊液、唾液、胸水、腹水、尿液等液体,分析样本中的核酸、蛋白质等生物标志物,为临床决策提供信息。作为一种新兴的疾病诊断和监测工具,过去十年来,液体活检在肿瘤诊断、进展检测及预后评估领域充分展现了其微创性、可重复性、动态监测和操作简便的优势。本文就液体活检在前列腺癌进展监测中的最新研究进展进行论述。

Prostate cancer is one of the most common malignant tumors in the male urogenital system, and the prolonged overall survival in recent years indicates that prostate cancer has entered the stage of chronic disease management. In the long-term treatment management process, real-time dynamic monitoring of prostate cancer progression and timely adjustment of treatment strategies based on diagnosis are of great significance for further prolonging the overall survival of patients. Liquid biopsy, as a non-invasive detection method, analyzes biomarkers such as nucleic acids and proteins in patients by collecting their blood, cerebrospinal fluid, saliva, pleural fluid, ascites, urine, and other fluids, providing information for clinical decision-making. As an emerging tool for disease diagnosis and monitoring, liquid biopsy has demonstrated its advantages in minimally invasive, reproducible, dynamic monitoring, and easy operation in the fields of tumor diagnosis, progression detection, and prognostic assessment over the past decade. This article discusses the latest research progress of liquid biopsy in monitoring the progression of prostate cancer.

表1 四项在前列腺癌进展监测中使用液体活检的临床研究
文献 研究指标 研究样本 研究类型 研究方法 结论
Chen等[18] 血浆cfDNA 60份局限性PCa和175份mCRPC患者的血浆样本 屏障队列(基线和治疗过程中收集的样本)、VPC队列的mCRPC样本具有cfDNA测序谱,CPC(原发性)和WCDT(mCRPC)队列具有匹配组织的多组学测序数据 cfMeDIP-seq测序法,全基因组甲基化分析 建立了一个预测器可区分局限性PCa和mCRPC血浆样本
Annala等[24] 血浆cfDNA mCRPC患者的血浆样本 202例未经治疗的mCRPC患者被随机分为阿比特龙加泼尼松组(n=101),恩扎鲁胺组(n=101) 全外显子测序,Targeted 72-gene sequencing 验证了mCRPC对AR靶向治疗耐药的基因组驱动因素
Auvinen等[39] 血浆外泌体 随机接受前列腺癌筛查男性的外周静脉血样本 男性被随机分为两组,一组为参加前列腺癌筛查的干预组,另一组为不予筛查的对照组。临床研究的主要结局是随访10年和15年的前列腺癌死亡率 基于随机分配的研究人群,筛查的效果量化为干预组与对照组之间的风险差异 目前尚无主要结局数据
Stuopelyte等[45] 尿液miRNA 237例PCa患者的标本(组织和/或尿液)、23例前列腺增生(BPH)患者和62例无症状对照男性的尿液标本 组织样本分为两组,PCa(n=56)以及非前列腺癌组织(n=16);尿液样本被分为四组,PCa1(n=143),PCa2(n=72),BPH(n=23),ASC(n=62),PCa1队列平均随访时间为2.7年,收集了91.6%(143例中131例)病例的随访数据。PCa2组平均随访时间较短(1.0年),72例患者中有18例缺少随访数据 RT-qPCR数据预处理、分析验证、归一化和统计分析 定量检测尿miR-148a和miR-375可作为一种无创、灵敏、特异检测前列腺癌的工具
[1]
Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023[J]. CA A Cancer J Clin, 2023, 73(1): 17-48. DOI: 10.3322/caac.21763.
[2]
郑荣寿, 陈茹, 韩冰峰, 等. 2022年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2024, 46(3): 221-231. DOI: 10.3760/cma.j.cn112152-20240119-00035.
[3]
Zeng H, Chen W, Zheng R, et al. Changing cancer survival in China during 2003-15: a pooled analysis of 17 population-based cancer registries[J]. Lancet Glob Health, 2018, 6(5): e555-e567. DOI: 10.1016/S2214-109X(18)30127-X.
[4]
中国前列腺癌研究协作组. 前列腺癌药物去势治疗随访管理中国专家共识(2024版)[J]. 中华肿瘤杂志, 2024, 46(4): 285-295. DOI: 10.3760/cma.j.cn112152-20240206-00067.
[5]
顾伟杰, 朱耀. 2022版《CSCO前列腺癌诊疗指南》更新要点解读[J]. 中国肿瘤外科杂志, 2022, 14(3): 224-232. DOI: 10.3969/j.issn.1674-4136.2022.03.004
[6]
Rebello RJ, Oing C, Knudsen KE, et al. Prostate cancer[J]. Nat Rev Dis Primers, 2021, 7: 9. DOI: 10.1038/s41572-020-00243-0.
[7]
Van Poppel H, Albreht T, Basu P, et al. Serum PSA-based early detection of prostate cancer in Europe and globally: past, present and future[J]. Nat Rev Urol, 2022, 19(9): 562-572. DOI: 10.1038/s41585-022-00638-6.
[8]
Schlemmer HP, Krause BJ, Schütz V, et al. Imaging of prostate cancer[J]. Deutsches Ärzteblatt Int, 2021,118(42):713-719. DOI: 10.3238/arztebl.m2021.0309
[9]
Klotz L, Chin J, Black PC, et al. Comparison of multiparametric magnetic resonance imaging-targeted biopsy with systematic transrectal ultrasonography biopsy for biopsy-naive men at risk for prostate cancer: a phase 3 randomized clinical trial[J]. JAMA Oncol, 2021, 7(4): 534-542. DOI: 10.1001/jamaoncol.2020.7589.
[10]
Stabile A, Giganti F, Rosenkrantz AB, et al. Multiparametric MRI for prostate cancer diagnosis: current status and future directions[J]. Nat Rev Urol, 2020, 17(1): 41-61. DOI: 10.1038/s41585-019-0212-4.
[11]
Lone SN, Nisar S, Masoodi T, et al. Liquid biopsy: a step closer to transform diagnosis, prognosis and future of cancer treatments[J]. Mol Cancer, 2022, 21(1): 79. DOI: 10.1186/s12943-022-01543-7.
[12]
Crocetto F, Russo G, Di Zazzo E, et al. Liquid biopsy in prostate cancer management-current challenges and future perspectives[J]. Cancers (Basel), 2022, 14(13): 3272. DOI: 10.3390/cancers14133272.
[13]
Soda N, Rehm BHA, Sonar P, et al. Advanced liquid biopsy technologies for circulating biomarker detection[J]. J Mater Chem B, 2019, 7(43): 6670-6704. DOI: 10.1039/C9TB01490J.
[14]
Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing[J]. N Engl J Med, 2012, 366(10): 883-892. DOI: 10.1056/NEJMoa1113205.
[15]
Huang HM, Li HX. Tumor heterogeneity and the potential role of liquid biopsy in bladder cancer[J]. Cancer Commun (Lond), 2021, 41(2): 91-108. DOI: 10.1002/cac2.12129.
[16]
Song P, Wu LR, Yan YH, et al. Limitations and opportunities of technologies for the analysis of cell-free DNA in cancer diagnostics[J]. Nat Biomed Eng, 2022, 6(3): 232-245. DOI: 10.1038/s41551-021-00837-3.
[17]
Trujillo B, Wu A, Wetterskog D, et al. Blood-based liquid biopsies for prostate cancer: clinical opportunities and challenges[J]. Br J Cancer, 2022, 127(8): 1394-1402. DOI: 10.1038/s41416-022-01881-9.
[18]
Chen S, Petricca J, Ye W, et al. The cell-free DNA methylome captures distinctions between localized and metastatic prostate tumors[J]. Nat Commun, 2022, 13(1): 6467. DOI: 10.1038/s41467-022-34012-2.
[19]
Cai M, Song XL, Li XA, et al. Current therapy and drug resistance in metastatic castration-resistant prostate cancer[J]. Drug Resist Updat, 2023, 68: 100962. DOI: 10.1016/j.drup.2023.100962.
[20]
Beltran H, Prandi D, Mosquera JM, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer[J]. Nat Med, 2016, 22(3): 298-305. DOI: 10.1038/nm.4045.
[21]
De Sarkar N, Patton RD, Doebley AL, et al. Nucleosome patterns in circulating tumor DNA reveal transcriptional regulation of advanced prostate cancer phenotypes[J]. Cancer Discov, 2023, 13(3): 632-653. DOI: 10.1158/2159-8290.CD-22-0692.
[22]
Tukachinsky H, Madison RW, Chung JH, et al. Genomic analysis of circulating tumor DNA in 3, 334 patients with advanced prostate cancer identifies targetable BRCA alterations and AR resistance mechanisms[J]. Clin Cancer Res, 2021, 27(11): 3094-3105. DOI: 10.1158/1078-0432.CCR-20-4805.
[23]
Buttigliero C, Tucci M, Bertaglia V, et al. Understanding and overcoming the mechanisms of primary and acquired resistance to abiraterone and enzalutamide in castration resistant prostate cancer[J]. Cancer Treat Rev, 2015, 41(10): 884-892. DOI: 10.1016/j.ctrv.2015.08.002.
[24]
Annala M, Vandekerkhove G, Khalaf D, et al. Circulating tumor DNA genomics correlate with resistance to abiraterone and enzalutamide in prostate cancer[J]. Cancer Discov, 2018, 8(4): 444-457. DOI: 10.1158/2159-8290.CD-17-0937.
[25]
Stejskal P, Goodarzi H, Srovnal J, et al. Circulating tumor nucleic acids: biology, release mechanisms, and clinical relevance[J]. Mol Cancer, 2023, 22(1): 15. DOI: 10.1186/s12943-022-01710-w.
[26]
Mithraprabhu S, Morley R, Khong T, et al. Monitoring tumour burden and therapeutic response through analysis of circulating tumour DNA and extracellular RNA in multiple myeloma patients[J]. Leukemia, 2019, 33(8): 2022-2033. DOI: 10.1038/s41375-019-0469-x.
[27]
Di Martino MT, Arbitrio M, Caracciolo D, et al. miR-221/222 as biomarkers and targets for therapeutic intervention on cancer and other diseases: a systematic review[J]. Mol Ther Nucleic Acids, 2022, 27: 1191-1224. DOI: 10.1016/j.omtn.2022.02.005.
[28]
Lee JH, Wang R, Xiong F, et al. Enhancer RNA m6A methylation facilitates transcriptional condensate formation and gene activation[J]. Mol Cell, 2021, 81(16): 3368-3385.e9. DOI: 10.1016/j.molcel.2021.07.024.
[29]
Zhao Y, Wen S, Li H, et al. Enhancer RNA promotes resistance to radiotherapy in bone-metastatic prostate cancer by m6A modification[J]. Theranostics, 2023, 13(2): 596-610. DOI: 10.7150/thno.78687.
[30]
Lin D, Shen L, Luo M, et al. Circulating tumor cells: biology and clinical significance[J]. Signal Transduct Target Ther, 2021, 6(1): 404. DOI: 10.1038/s41392-021-00817-8.
[31]
Deng Z, Wu S, Wang Y, et al. Circulating tumor cell isolation for cancer diagnosis and prognosis[J]. EBioMedicine, 2022, 83: 104237. DOI: 10.1016/j.ebiom.2022.104237.
[32]
Miyamoto DT, Lee RJ, Kalinich M, et al. An RNA-based digital circulating tumor cell signature is predictive of drug response and early dissemination in prostate cancer[J]. Cancer Discov, 2018, 8(3): 288-303. DOI: 10.1158/2159-8290.CD-16-1406.
[33]
van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles[J]. Nat Rev Mol Cell Biol, 2018, 19(4): 213-228. DOI: 10.1038/nrm.2017.125.
[34]
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977. DOI: 10.1126/science.aau6977.
[35]
Pang B, Wang Q, Chen H, et al. Proteomic identification of small extracellular vesicle proteins LAMB1 and histone H4 for prostate cancer diagnosis and risk stratification[J]. Adv Sci (Weinh), 2024, 11(23): e2402509. DOI: 10.1002/advs.202402509.
[36]
Liu P, Wang W, Wang F, et al. Alterations of plasma exosomal proteins and motabolies are associated with the progression of castration-resistant prostate cancer[J]. J Transl Med, 2023, 21(1): 40. DOI: 10.1186/s12967-022-03860-3.
[37]
Lehto TK, Kovanen RM, Lintula S, et al. Prognostic impact of kallikrein-related peptidase transcript levels in prostate cancer[J]. Int J Cancer, 2023, 153(4): 867-881. DOI: 10.1002/ijc.34551.
[38]
Thorek DLJ, Evans MJ, Carlsson SV, et al. Prostate-specific kallikrein-related peptidases and their relation to prostate cancer biology and detection. Established relevance and emerging roles[J]. Thromb Haemost, 2013, 110(3): 484-492. DOI: 10.1160/TH13-04-0275.
[39]
Auvinen A, Tammela TLJ, Mirtti T, et al. Prostate cancer screening with PSA, kallikrein panel, and MRI: the ProScreen randomized trial[J]. JAMA, 2024, 331(17): 1452-1459. DOI: 10.1001/jama.2024.3841.
[40]
Bryant RJ, Sjoberg DD, Vickers AJ, et al. Predicting high-grade cancer at ten-core prostate biopsy using four kallikrein markers measured in blood in the ProtecT study[J]. J Natl Cancer Inst, 2015, 107(7): djv095. DOI: 10.1093/jnci/djv095.
[41]
Kim WT, Kim YH, Jeong P, et al. Urinary cell-free nucleic acid IQGAP3: a new non-invasive diagnostic marker for bladder cancer[J]. Oncotarget, 2018, 9(18): 14354-14365. DOI: 10.18632/oncotarget.24436.
[42]
Mugoni V, Ciani Y, Nardella C, et al. Circulating RNAs in prostate cancer patients[J]. Cancer Lett, 2022, 524: 57-69. DOI: 10.1016/j.canlet.2021.10.011.
[43]
Lu T, Li J. Clinical applications of urinary cell-free DNA in cancer: current insights and promising future[J]. Am J Cancer Res, 2017, 7(11): 2318-2332.
[44]
Zhao F, Olkhov-Mitsel E, van der Kwast T, et al. Urinary DNA methylation biomarkers for noninvasive prediction of aggressive disease in patients with prostate cancer on active surveillance[J]. J Urol, 2017, 197(2): 335-341. DOI: 10.1016/j.juro.2016.08.081.
[45]
Stuopelyte K, Daniunaite K, Bakavicius A, et al. The utility of urine-circulating miRNAs for detection of prostate cancer[J]. Br J Cancer, 2016, 115(6): 707-715. DOI: 10.1038/bjc.2016.233.
[46]
Clos-Garcia M, Loizaga-Iriarte A, Zuñiga-Garcia P, et al. Metabolic alterations in urine extracellular vesicles are associated to prostate cancer pathogenesis and progression[J]. J Extracell Vesicles, 2018, 7(1): 1470442. DOI: 10.1080/20013078.2018.1470442.
[47]
Lima AR, Pinto J, Amaro F, et al. Advances and perspectives in prostate cancer biomarker discovery in the last 5 years through tissue and urine metabolomics[J]. Metabolites, 2021, 11(3): 181. DOI: 10.3390/metabo11030181.
[48]
Tuong ZK, Loudon KW, Berry B, et al. Resolving the immune landscape of human prostate at a single-cell level in health and cancer[J]. Cell Rep, 2021, 37(12): 110132. DOI: 10.1016/j.celrep.2021.110132.
[49]
Yun KI, Pak UG, Han TS, et al. Determination of prostatic fluid citrate concentration using peroxidase-like activity of a peroxotitanium complex[J]. Anal Biochem, 2023, 672: 115152. DOI: 10.1016/j.ab.2023.115152.
[50]
Zagoskin MV, Davis RE, Mukha DV. Double stranded RNA in human seminal plasma[J]. Front Genet, 2017, 8: 154. DOI: 10.3389/fgene.2017.00154.
[51]
Ruiz-Plazas X, Altuna-Coy A, Alves-Santiago M, et al. Liquid biopsy-based exo-oncomiRNAs can predict prostate cancer aggressiveness[J]. Cancers (Basel), 2021, 13(2): 250. DOI: 10.3390/cancers13020250.
[52]
Wang TT, Abelson S, Zou J, et al. High efficiency error suppression for accurate detection of low-frequency variants[J]. Nucleic Acids Res, 2019, 47(15): e87. DOI: 10.1093/nar/gkz474.
[53]
Ignatiadis M, Sledge GW, Jeffrey SS. Liquid biopsy enters the clinic-implementation issues and future challenges[J]. Nat Rev Clin Oncol, 2021, 18(5): 297-312. DOI: 10.1038/s41571-020-00457-x.
[1] 王茹倩, 罗红, 曹威特. 子宫血管周上皮细胞瘤诊疗的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(02): 151-156.
[2] 陈思鹭, 杨兴, 李学松, 谌诚. 靶向PSMA的荧光探针在前列腺癌显像中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 547-551.
[3] 潘麒文, 何立儒. 前列腺癌放射治疗前沿进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 552-557.
[4] 谭廷武, 张平新, 夏成兴, 杨德林. 单细胞测序技术在前列腺癌免疫治疗中的应用现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 508-513.
[5] 张嘉炜, 吴宇光, 余维东, 陈江明, 杨诚, 熊茂明. 前列腺MRI参数及临床因素与机器人前列腺癌根治术后腹股沟疝发生的相关性研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(03): 258-264.
[6] 田学, 魏东坡, 孟潇潇, 谢晖, 王瑞兰. 生物信息学筛选相关肺纤维化诊断的生物标志物研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 534-539.
[7] 刘若暄, 吴岐佑, 刘振华, 杨璐, 魏强, 沈朋飞, 涂祥. 机器人辅助前列腺穿刺技术在前列腺癌早期诊断中的应用进展[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(03): 184-187.
[8] 袭厚榕, 隋晓峰. 基于生物信息学分析乳腺癌组织STIP1表达在免疫浸润中的作用[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(04): 208-216.
[9] 柳凯, 李向各, 王成, 汤润. ZEB1 通过调控Wnt/β-catenin 信号通路促进前列腺癌细胞增殖、迁移和侵袭[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(03): 157-166.
[10] 方兴保, 庞国莲, 李月宏, 蔡艳. 基于多组学分析MCAM在肝癌中表达及其与生存预后和免疫细胞浸润的关系[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 716-724.
[11] 姚金平, 郭涛, 张逸辰, 常磊, 冯雨舟, 崔精, 陈建欢, 鲍传庆. 基于免疫微环境分析探讨FN1与DOCK2在结肠癌中的预后价值[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(04): 333-344.
[12] 章敏. 利用多组学技术筛选慢性肾脏病早期预警和预后标志物[J/OL]. 中华肾病研究电子杂志, 2025, 14(02): 120-120.
[13] 张泽瀚, 费晓炜, 吕伟豪, 蔡敏, 庄茁, 王化宁, 费舟. 创伤后应激障碍的生物标志物研究进展[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(03): 185-191.
[14] 袁瑛, 徐超, 崔砚, 徐江, 徐如祥. 植入式自适应深部脑刺激在帕金森病治疗中的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(04): 193-198.
[15] 王美琴, 潘海涛, 陈祥菲, 吴婉, 周昱和, 王砚青. S100B 蛋白在心血管疾病中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(03): 229-233.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?