切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2025, Vol. 19 ›› Issue (05) : 547 -551. doi: 10.3877/cma.j.issn.1674-3253.2025.05.001

专家论坛

靶向PSMA的荧光探针在前列腺癌显像中的研究进展
陈思鹭1, 杨兴2, 李学松1, 谌诚1,()   
  1. 1100034 北京大学第一医院泌尿外科,北京大学泌尿外科研究所,国家泌尿、男性生殖系肿瘤研究中心
    2100034 北京大学第一医院核医学科
  • 收稿日期:2024-04-25 出版日期:2025-10-01
  • 通信作者: 谌诚
  • 基金资助:
    国家重点研发计划(2023YFC2413400); 北京市自然科学基金(L248067)

Advances of PSMA-targeted fluorescence probes in prostate cancer imaging

Silu Chen1, Xing Yang2, Xuesong Li1, Cheng Shen1,()   

  1. 1Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing 100034, China
    2Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
  • Received:2024-04-25 Published:2025-10-01
  • Corresponding author: Cheng Shen
引用本文:

陈思鹭, 杨兴, 李学松, 谌诚. 靶向PSMA的荧光探针在前列腺癌显像中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 547-551.

Silu Chen, Xing Yang, Xuesong Li, Cheng Shen. Advances of PSMA-targeted fluorescence probes in prostate cancer imaging[J/OL]. Chinese Journal of Endourology(Electronic Edition), 2025, 19(05): 547-551.

前列腺癌手术的难点在于盆腔狭小空间内精准实现肿瘤完整切除与周围功能结构保留之间的平衡。目前,术中尚缺乏高灵敏度与高特异性的实时显像技术,以精准定位肿瘤并确定其侵犯范围。靶向前列腺特异性膜抗原(PSMA)的荧光探针的研发与临床转化,为解决此难题带来了新策略。本文系统综述了靶向PSMA荧光探针在前列腺癌临床前研究、临床应用方面的最新进展,并探讨了靶向PSMA核素/荧光双模态探针的发展现状与前景。

The challenge in prostate cancer surgery lies in achieving a balance between complete tumor resection and preservation of surrounding functional structures within the confined pelvic space. Currently, there is a lack of intraoperative real-time imaging techniques with both high sensitivity and high specificity to accurately locate the tumor and delineate its extension. The development and clinical translation of prostate-specific membrane antigen (PSMA)-targeted fluorescence probes provide a novel strategy. This article systematically reviews the advances in PSMA-targeted fluorescence probes for preclinical research and clinical applications in prostate cancer, as well as PSMA-targeted radionuclide/fluorescence dual-modal probes.

[1]
Mottet N, van den Bergh RCN, Briers E, et al. EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer-2020 update. part 1: screening, diagnosis, and local treatment with curative intent[J]. Eur Urol, 2021, 79(2): 243-262. DOI: 10.1016/j.eururo.2020.09.042.
[2]
Chow KM, So WZ, Lee HJ, et al. Head-to-head comparison of the diagnostic accuracy of prostate-specific membrane antigen positron emission tomography and conventional imaging modalities for initial staging of intermediate- to high-risk prostate cancer: a systematic review and meta-analysis[J]. Eur Urol, 2023, 84(1): 36-48. DOI: 10.1016/j.eururo.2023.03.001.
[3]
Martini A, Gandaglia G, Fossati N, et al. Defining clinically meaningful positive surgical margins in patients undergoing radical prostatectomy for localised prostate cancer[J]. Eur Urol Oncol, 2021, 4(1): 42-48. DOI: 10.1016/j.euo.2019.03.006.
[4]
Moris L, Gandaglia G, Vilaseca A, et al. Evaluation of oncological outcomes and data quality in studies assessing nerve-sparing versus non-nerve-sparing radical prostatectomy in nonmetastatic prostate cancer: a systematic review[J]. Eur Urol Focus, 2022, 8(3): 690-700. DOI: 10.1016/j.euf.2021.05.009.
[5]
de Jong JM, Hoogendam JP, Braat AT, et al. The feasibility of folate receptor alpha- and HER2-targeted intraoperative fluorescence-guided cytoreductive surgery in women with epithelial ovarian cancer: a systematic review[J]. Gynecol Oncol, 2021, 162(2): 517-525. DOI: 10.1016/j.ygyno.2021.05.017.
[6]
Zhou Q, van den Berg NS, Rosenthal EL, et al. EGFR-targeted intraoperative fluorescence imaging detects high-grade glioma with panitumumab-IRDye800 in a phase 1 clinical trial[J]. Theranostics, 2021, 11(15): 7130-7143. DOI: 10.7150/thno.60582.
[7]
张继燊, 谢玉洁, 杨婷, 等. 前列腺特异性膜抗原PET/CT对减少前列腺癌过度穿刺活检的应用价值[J]. 中山大学学报(医学科学版), 2025, 46(2): 311-317. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2025.0215.
[8]
Fizazi K, Herrmann K, Krause BJ, et al. Health-related quality of life and pain outcomes with [177Lu] Lu-PSMA-617 plus standard of care versus standard of care in patients with metastatic castration-resistant prostate cancer (VISION): a multicentre, open-label, randomised, phase 3 trial[J]. Lancet Oncol, 2023, 24(6): 597-610. DOI: 10.1016/S1470-2045(23)00158-4.
[9]
Uspenskaia AA, Krasnikov PA, Majouga AG, et al. Fluorescent conjugates based on prostate-specific membrane antigen ligands as an effective visualization tool for prostate cancer[J]. Biochemistry (Mosc), 2023, 88(7): 953-967. DOI: 10.1134/S0006297923070088.
[10]
吴波. 前列腺癌荧光导航手术的临床研究与前列腺癌特异性荧光探针的临床前研究[D]. 山西: 山西医科大学, 2021.
[11]
Hensbergen AW, van Willigen DM, van Beurden F, et al. Image-guided surgery: are we getting the most out of small-molecule prostate-specific-membrane-antigen-targeted tracers?[J]. Bioconjug Chem, 2020, 31(2): 375-395. DOI: 10.1021/acs.bioconjchem.9b00758.
[12]
Humblet V, Lapidus R, Williams LR, et al. High-affinity near-infrared fluorescent small-molecule contrast agents for in vivo imaging of prostate-specific membrane antigen[J]. Mol Imaging, 2005, 4(4): 448-462. DOI: 10.2310/7290.2005.05163.
[13]
Chen Y, Dhara S, Banerjee SR, et al. A low molecular weight PSMA-based fluorescent imaging agent for cancer[J]. Biochem Biophys Res Commun, 2009, 390(3): 624-629. DOI: 10.1016/j.bbrc.2009.10.017.
[14]
Neuman BP, Eifler JB, Castanares M, et al. Real-time, near-infrared fluorescence imaging with an optimized dye/light source/camera combination for surgical guidance of prostate cancer[J]. Clin Cancer Res, 2015, 21(4): 771-780. DOI: 10.1158/1078-0432.CCR-14-0891.
[15]
Wang X, Huang SS, Heston WDW, et al. Development of targeted near-infrared imaging agents for prostate cancer[J]. Mol Cancer Ther, 2014, 13(11): 2595-2606. DOI: 10.1158/1535-7163.MCT-14-0422.
[16]
Zhang L, Shi X, Li Y, et al. Visualizing tumors in real time: a highly sensitive PSMA probe for NIR-II imaging and intraoperative tumor resection[J]. J Med Chem, 2021, 64(11): 7735-7745. DOI: 10.1021/acs.jmedchem.1c00444.
[17]
Kularatne SA, Thomas M, Myers CH, et al. Evaluation of novel prostate-specific membrane antigen-targeted near-infrared imaging agent for fluorescence-guided surgery of prostate cancer[J]. Clin Cancer Res, 2019, 25(1): 177-187. DOI: 10.1158/1078-0432.CCR-18-0803.
[18]
Stibbe JA, de Barros HA, Linders DGJ, et al. First-in-patient study of OTL78 for intraoperative fluorescence imaging of prostate-specific membrane antigen-positive prostate cancer: a single-arm, phase 2a, feasibility trial[J]. Lancet Oncol, 2023, 24(5): 457-467. DOI: 10.1016/S1470-2045(23)00102-X.
[19]
Nguyen HG, van den Berg NS, Antaris AL, et al. First-in-human evaluation of a prostate-specific membrane antigen-targeted near-infrared fluorescent small molecule for fluorescence-based identification of prostate cancer in patients with high-risk prostate cancer undergoing robotic-assisted prostatectomy[J]. Eur Urol Oncol, 2024, 7(1): 63-72. DOI: 10.1016/j.euo.2023.07.004.
[20]
Eder AC, Omrane MA, Stadlbauer S, et al. The PSMA-11-derived hybrid molecule PSMA-914 specifically identifies prostate cancer by preoperative PET/CT and intraoperative fluorescence imaging[J]. Eur J Nucl Med Mol Imaging, 2021, 48(6): 2057-2058. DOI: 10.1007/s00259-020-05184-0.
[21]
Lütje S, Rijpkema M, Franssen GM, et al. Dual-modality image-guided surgery of prostate cancer with a radiolabeled fluorescent anti-PSMA monoclonal antibody[J]. J Nucl Med, 2014, 55(6): 995-1001. DOI: 10.2967/jnumed.114.138180.
[22]
Baranski AC, Schäfer M, Bauder-Wüst U, et al. PSMA-11-derived dual-labeled PSMA inhibitors for preoperative PET imaging and precise fluorescence-guided surgery of prostate cancer[J]. J Nucl Med, 2018, 59(4): 639-645. DOI: 10.2967/jnumed.117.201293.
[23]
Eder AC, Schäfer M, Schmidt J, et al. Rational linker design to accelerate excretion and reduce background uptake of peptidomimetic PSMA-targeting hybrid molecules[J]. J Nucl Med, 2021, 62(10): 1461-1467. DOI: 10.2967/jnumed.120.248443.
[24]
Kommidi H, Guo H, Nurili F, et al. 18F-positron emitting/trimethine cyanine-fluorescent contrast for image-guided prostate cancer management[J]. J Med Chem, 2018, 61(9): 4256-4262. DOI: 10.1021/acs.jmedchem.8b00240.
[25]
Aras O, Demirdag C, Kommidi H, et al. Small molecule, multimodal, [18F]-PET and fluorescence imaging agent targeting prostate-specific membrane antigen: first-in-human study[J]. Clin Genitourin Cancer, 2021, 19(5): 405-416. DOI: 10.1016/j.clgc.2021.03.011.
[26]
Fu H, Lou K, He H, et al. A novel PSMA targeted dual-function near-infrared fluorescence and PET probe for the image-guided surgery and detection of prostate cancer[J]. Eur J Nucl Med Mol Imaging, 2024, 51(10): 2998-3008. DOI: 10.1007/s00259-023-06492-x.
[27]
Duan X, Liu F, Kwon H, et al. (S)-3-(Carboxyformamido)-2-(3-(carboxymethyl)ureido)propanoic Acid as a Novel PSMA Targeting Scaffold for Prostate Cancer Imaging[J]. J Med Chem, 2020, 63(7): 3563-3576. DOI: 10.1021/acs.jmedchem.9b02031.
[28]
Duan X, Cao Z, Zhu H, et al. 68Ga-labeled ODAP-Urea-based PSMA agents in prostate cancer: first-in-human imaging of an optimized agent[J]. Eur J Nucl Med Mol Imaging, 2022, 49(3): 1030-1040. DOI: 10.1007/s00259-021-05486-x.
[29]
Li Y, Duan X, Xu H, et al. Optimization of ODAP-Urea-based dual-modality PSMA targeting probes for sequential PET-CT and optical imaging[J]. Bioorg Med Chem, 2022, 66: 116810. DOI: 10.1016/j.bmc.2022.116810.
[1] 谭廷武, 张平新, 夏成兴, 杨德林. 单细胞测序技术在前列腺癌免疫治疗中的应用现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 508-513.
[2] 李永红, 王骏, 肖恒军. 2025-NCCN前列腺癌诊治指南更新解读[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 129-133.
[3] 邱皓炜, 徐臻, 肖泽秀, 夏燕, 查高峰, 庞俊. 前列腺癌mRNA 疫苗研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 134-139.
[4] 刘咏博, 郭佳. 外泌体在前列腺癌细胞免疫逃逸中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 140-145.
[5] 杨健, 杨璐. 体液外泌体在前列腺癌诊断中的应用前景[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 146-151.
[6] 董振阳, 瞿旻, 王燕, 张韻, 高旭. 序贯多学科会诊模式在前列腺癌全程管理中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 152-158.
[7] 周松, 蒋湘勇, 康海, 杨科, 危安, 唐振华, 李铁求. 超声造影诊断前列腺癌的应用价值:一项荟萃分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 159-166.
[8] 潘永昇, 江杰, 曹栋梁, 季陈, 姜丽丽, 陈建刚, 朱华, 郑兵. 经会阴认知融合靶向穿刺在PI-RADS V2.1评分为五分患者中的诊断价值[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 167-173.
[9] 万颂, 刘璇, 黄源兴, 江文聪, 周宇林, 习明. 胆固醇生物合成相关基因对前列腺癌预后和治疗的意义[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 205-215.
[10] 罗添龙, 贺情情, 黄海. 泌尿功能障碍慢性病的长期综合管理和持久康复实践[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 21-26.
[11] 张嘉炜, 吴宇光, 余维东, 陈江明, 杨诚, 熊茂明. 前列腺MRI参数及临床因素与机器人前列腺癌根治术后腹股沟疝发生的相关性研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(03): 258-264.
[12] 刘若暄, 吴岐佑, 刘振华, 杨璐, 魏强, 沈朋飞, 涂祥. 机器人辅助前列腺穿刺技术在前列腺癌早期诊断中的应用进展[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(03): 184-187.
[13] 柳凯, 李向各, 王成, 汤润. ZEB1 通过调控Wnt/β-catenin 信号通路促进前列腺癌细胞增殖、迁移和侵袭[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(03): 157-166.
[14] 曹婧然, 王勇, 张宝帅, 周怡, 徐勇. 老年前列腺疾病患者肌少症、营养状况和衰弱状况调查分析[J/OL]. 中华老年病研究电子杂志, 2025, 12(02): 14-18.
[15] 石继开, 王平, 陈军. 基于胆固醇代谢相关基因构建前列腺癌复发的风险预测模型[J/OL]. 中华老年病研究电子杂志, 2025, 12(01): 22-29.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?