[1] |
Mottet N, van den Bergh RCN, Briers E, et al. EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer-2020 update. part 1: screening, diagnosis, and local treatment with curative intent[J]. Eur Urol, 2021, 79(2): 243-262. DOI: 10.1016/j.eururo.2020.09.042.
|
[2] |
Chow KM, So WZ, Lee HJ, et al. Head-to-head comparison of the diagnostic accuracy of prostate-specific membrane antigen positron emission tomography and conventional imaging modalities for initial staging of intermediate- to high-risk prostate cancer: a systematic review and meta-analysis[J]. Eur Urol, 2023, 84(1): 36-48. DOI: 10.1016/j.eururo.2023.03.001.
|
[3] |
Martini A, Gandaglia G, Fossati N, et al. Defining clinically meaningful positive surgical margins in patients undergoing radical prostatectomy for localised prostate cancer[J]. Eur Urol Oncol, 2021, 4(1): 42-48. DOI: 10.1016/j.euo.2019.03.006.
|
[4] |
Moris L, Gandaglia G, Vilaseca A, et al. Evaluation of oncological outcomes and data quality in studies assessing nerve-sparing versus non-nerve-sparing radical prostatectomy in nonmetastatic prostate cancer: a systematic review[J]. Eur Urol Focus, 2022, 8(3): 690-700. DOI: 10.1016/j.euf.2021.05.009.
|
[5] |
de Jong JM, Hoogendam JP, Braat AT, et al. The feasibility of folate receptor alpha- and HER2-targeted intraoperative fluorescence-guided cytoreductive surgery in women with epithelial ovarian cancer: a systematic review[J]. Gynecol Oncol, 2021, 162(2): 517-525. DOI: 10.1016/j.ygyno.2021.05.017.
|
[6] |
Zhou Q, van den Berg NS, Rosenthal EL, et al. EGFR-targeted intraoperative fluorescence imaging detects high-grade glioma with panitumumab-IRDye800 in a phase 1 clinical trial[J]. Theranostics, 2021, 11(15): 7130-7143. DOI: 10.7150/thno.60582.
|
[7] |
|
[8] |
Fizazi K, Herrmann K, Krause BJ, et al. Health-related quality of life and pain outcomes with [ 177Lu] Lu-PSMA-617 plus standard of care versus standard of care in patients with metastatic castration-resistant prostate cancer (VISION): a multicentre, open-label, randomised, phase 3 trial[J]. Lancet Oncol, 2023, 24(6): 597-610. DOI: 10.1016/S1470-2045(23)00158-4.
|
[9] |
Uspenskaia AA, Krasnikov PA, Majouga AG, et al. Fluorescent conjugates based on prostate-specific membrane antigen ligands as an effective visualization tool for prostate cancer[J]. Biochemistry (Mosc), 2023, 88(7): 953-967. DOI: 10.1134/S0006297923070088.
|
[10] |
吴波. 前列腺癌荧光导航手术的临床研究与前列腺癌特异性荧光探针的临床前研究[D]. 山西: 山西医科大学, 2021.
|
[11] |
Hensbergen AW, van Willigen DM, van Beurden F, et al. Image-guided surgery: are we getting the most out of small-molecule prostate-specific-membrane-antigen-targeted tracers?[J]. Bioconjug Chem, 2020, 31(2): 375-395. DOI: 10.1021/acs.bioconjchem.9b00758.
|
[12] |
Humblet V, Lapidus R, Williams LR, et al. High-affinity near-infrared fluorescent small-molecule contrast agents for in vivo imaging of prostate-specific membrane antigen[J]. Mol Imaging, 2005, 4(4): 448-462. DOI: 10.2310/7290.2005.05163.
|
[13] |
Chen Y, Dhara S, Banerjee SR, et al. A low molecular weight PSMA-based fluorescent imaging agent for cancer[J]. Biochem Biophys Res Commun, 2009, 390(3): 624-629. DOI: 10.1016/j.bbrc.2009.10.017.
|
[14] |
Neuman BP, Eifler JB, Castanares M, et al. Real-time, near-infrared fluorescence imaging with an optimized dye/light source/camera combination for surgical guidance of prostate cancer[J]. Clin Cancer Res, 2015, 21(4): 771-780. DOI: 10.1158/1078-0432.CCR-14-0891.
|
[15] |
Wang X, Huang SS, Heston WDW, et al. Development of targeted near-infrared imaging agents for prostate cancer[J]. Mol Cancer Ther, 2014, 13(11): 2595-2606. DOI: 10.1158/1535-7163.MCT-14-0422.
|
[16] |
Zhang L, Shi X, Li Y, et al. Visualizing tumors in real time: a highly sensitive PSMA probe for NIR-II imaging and intraoperative tumor resection[J]. J Med Chem, 2021, 64(11): 7735-7745. DOI: 10.1021/acs.jmedchem.1c00444.
|
[17] |
Kularatne SA, Thomas M, Myers CH, et al. Evaluation of novel prostate-specific membrane antigen-targeted near-infrared imaging agent for fluorescence-guided surgery of prostate cancer[J]. Clin Cancer Res, 2019, 25(1): 177-187. DOI: 10.1158/1078-0432.CCR-18-0803.
|
[18] |
Stibbe JA, de Barros HA, Linders DGJ, et al. First-in-patient study of OTL78 for intraoperative fluorescence imaging of prostate-specific membrane antigen-positive prostate cancer: a single-arm, phase 2a, feasibility trial[J]. Lancet Oncol, 2023, 24(5): 457-467. DOI: 10.1016/S1470-2045(23)00102-X.
|
[19] |
Nguyen HG, van den Berg NS, Antaris AL, et al. First-in-human evaluation of a prostate-specific membrane antigen-targeted near-infrared fluorescent small molecule for fluorescence-based identification of prostate cancer in patients with high-risk prostate cancer undergoing robotic-assisted prostatectomy[J]. Eur Urol Oncol, 2024, 7(1): 63-72. DOI: 10.1016/j.euo.2023.07.004.
|
[20] |
Eder AC, Omrane MA, Stadlbauer S, et al. The PSMA-11-derived hybrid molecule PSMA-914 specifically identifies prostate cancer by preoperative PET/CT and intraoperative fluorescence imaging[J]. Eur J Nucl Med Mol Imaging, 2021, 48(6): 2057-2058. DOI: 10.1007/s00259-020-05184-0.
|
[21] |
Lütje S, Rijpkema M, Franssen GM, et al. Dual-modality image-guided surgery of prostate cancer with a radiolabeled fluorescent anti-PSMA monoclonal antibody[J]. J Nucl Med, 2014, 55(6): 995-1001. DOI: 10.2967/jnumed.114.138180.
|
[22] |
Baranski AC, Schäfer M, Bauder-Wüst U, et al. PSMA-11-derived dual-labeled PSMA inhibitors for preoperative PET imaging and precise fluorescence-guided surgery of prostate cancer[J]. J Nucl Med, 2018, 59(4): 639-645. DOI: 10.2967/jnumed.117.201293.
|
[23] |
Eder AC, Schäfer M, Schmidt J, et al. Rational linker design to accelerate excretion and reduce background uptake of peptidomimetic PSMA-targeting hybrid molecules[J]. J Nucl Med, 2021, 62(10): 1461-1467. DOI: 10.2967/jnumed.120.248443.
|
[24] |
Kommidi H, Guo H, Nurili F, et al. 18F-positron emitting/trimethine cyanine-fluorescent contrast for image-guided prostate cancer management[J]. J Med Chem, 2018, 61(9): 4256-4262. DOI: 10.1021/acs.jmedchem.8b00240.
|
[25] |
Aras O, Demirdag C, Kommidi H, et al. Small molecule, multimodal, [ 18F]-PET and fluorescence imaging agent targeting prostate-specific membrane antigen: first-in-human study[J]. Clin Genitourin Cancer, 2021, 19(5): 405-416. DOI: 10.1016/j.clgc.2021.03.011.
|
[26] |
Fu H, Lou K, He H, et al. A novel PSMA targeted dual-function near-infrared fluorescence and PET probe for the image-guided surgery and detection of prostate cancer[J]. Eur J Nucl Med Mol Imaging, 2024, 51(10): 2998-3008. DOI: 10.1007/s00259-023-06492-x.
|
[27] |
Duan X, Liu F, Kwon H, et al. (S)-3-(Carboxyformamido)-2-(3-(carboxymethyl)ureido)propanoic Acid as a Novel PSMA Targeting Scaffold for Prostate Cancer Imaging[J]. J Med Chem, 2020, 63(7): 3563-3576. DOI: 10.1021/acs.jmedchem.9b02031.
|
[28] |
Duan X, Cao Z, Zhu H, et al. 68Ga-labeled ODAP-Urea-based PSMA agents in prostate cancer: first-in-human imaging of an optimized agent[J]. Eur J Nucl Med Mol Imaging, 2022, 49(3): 1030-1040. DOI: 10.1007/s00259-021-05486-x.
|
[29] |
Li Y, Duan X, Xu H, et al. Optimization of ODAP-Urea-based dual-modality PSMA targeting probes for sequential PET-CT and optical imaging[J]. Bioorg Med Chem, 2022, 66: 116810. DOI: 10.1016/j.bmc.2022.116810.
|