切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2025, Vol. 19 ›› Issue (04) : 508 -513. doi: 10.3877/cma.j.issn.1674-3253.2025.04.018

所属专题: 文献

综述

单细胞测序技术在前列腺癌免疫治疗中的应用现状及展望
谭廷武, 张平新, 夏成兴, 杨德林()   
  1. 650033 云南,昆明医科大学第二附属医院泌尿外科
  • 收稿日期:2024-10-12 出版日期:2025-08-01
  • 通信作者: 杨德林
  • 基金资助:
    云南省应用基础研究计划项目(202301AT070321)

Application status and prospects of single-cell sequencing technology in immunotherapy of prostate cancer

Tingwu Tan, Pingxin Zhang, Chengxing Xia, Delin Yang()   

  1. Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming 650033, China
  • Received:2024-10-12 Published:2025-08-01
  • Corresponding author: Delin Yang
引用本文:

谭廷武, 张平新, 夏成兴, 杨德林. 单细胞测序技术在前列腺癌免疫治疗中的应用现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 508-513.

Tingwu Tan, Pingxin Zhang, Chengxing Xia, Delin Yang. Application status and prospects of single-cell sequencing technology in immunotherapy of prostate cancer[J/OL]. Chinese Journal of Endourology(Electronic Edition), 2025, 19(04): 508-513.

前列腺癌是男性肿瘤中最常见的疾病之一,目前对于转移性前列腺癌的标准治疗是雄激素抑制治疗。但接受雄激素抑制治疗的患者最终会发展为转移性去势抵抗性前列腺癌。免疫治疗已在多种肿瘤上取得了令人鼓舞的效果,但在前列腺癌中,免疫治疗效果却并不理想。单细胞测序技术可以在单个细胞水平上对细胞进行高分辨率分析,对研究前列腺癌的免疫治疗有重要价值。本文主要对单细胞测序技术在前列腺癌免疫治疗中的研究现状及未来发展进行综述。

Prostate cancer is one of the most common malignancies in men and the current standard treatment for metastatic prostate cancer is androgen deprivation therapy. However, the patients treated with androgen deprivation therapy eventually develop metastatic castration-resistant prostate cancer. Immunotherapy has shown promising results in a variety of tumors, but in prostate cancer, the results have been less than satisfactory. Single-cell sequencing technology enables high-resolution analysis of cells at the single-cell level, which is of great value for studying immunotherapy for prostate cancer. This article reviews the research status and future development of single-cell sequencing technology in the immunotherapy of prostate cancer.

[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023[J]. CA A Cancer J Clin, 2023, 73(1): 17-48. DOI: 10.3322/caac.21763.
[3]
He H, Liang L, Han D, et al. Different trends in the incidence and mortality rates of prostate cancer between China and the USA: a joinpoint and age-period-cohort analysis[J]. Front Med (Lausanne), 2022, 9: 824464. DOI: 10.3389/fmed.2022.824464.
[4]
Shi W, Wang Y, Zhao Y, et al. Immune checkpoint B7-H3 is a therapeutic vulnerability in prostate cancer harboring PTEN and TP53 deficiencies[J]. Sci Transl Med, 2023, 15(695): eadf6724. DOI: 10.1126/scitranslmed.adf6724.
[5]
Yasen A, Aini A, Wang H, et al. Progress and applications of single-cell sequencing techniques[J]. Infect Genet Evol, 2020, 80: 104198. DOI: 10.1016/j.meegid.2020.104198.
[6]
Tang X, Huang Y, Lei J, et al. The single-cell sequencing: new developments and medical applications[J]. Cell Biosci, 2019, 9: 53. DOI: 10.1186/s13578-019-0314-y.
[7]
方雯, 孙洋. 单细胞技术在药理学研究中的应用[J]. 中国药理学通报, 2023, 39(9): 1601-1606, 1612. DOI: 10.12360/CPB202302072.
[8]
冉志强, 桂定文. 系统免疫炎症指数与前列腺癌相关性的研究进展[J]. 现代泌尿生殖肿瘤杂志, 2024, 16(5): 317-320. DOI: 10.3870/j.issn.1674-4624.2023.05.016.
[9]
Chen S, Zhu G, Yang Y, et al. Single-cell analysis reveals transcriptomic remodellings in distinct cell types that contribute to human prostate cancer progression[J]. Nat Cell Biol, 2021, 23(1): 87-98. DOI: 10.1038/s41556-020-00613-6.
[10]
Tuong ZK, Loudon KW, Berry B, et al. Resolving the immune landscape of human prostate at a single-cell level in health and cancer[J]. Cell Rep, 2021, 37(12): 110132. DOI: 10.1016/j.celrep.2021.110132.
[11]
Zhang Y, Fan A, Li Y, et al. Single-cell RNA sequencing reveals that HSD17B2 in cancer-associated fibroblasts promotes the development and progression of castration-resistant prostate cancer[J]. Cancer Lett, 2023, 566: 216244. DOI: 10.1016/j.canlet.2023.216244.
[12]
Siefert JC, Cioni B, Muraro MJ, et al. The prognostic potential of human prostate cancer-associated macrophage subtypes as revealed by single-cell transcriptomics[J]. Mol Cancer Res, 2021, 19(10): 1778-1791. DOI: 10.1158/1541-7786.MCR-20-0740.
[13]
Abbott M, Ustoyev Y. Cancer and the immune system: the history and background of immunotherapy[J]. Semin Oncol Nurs, 2019, 35(5): 150923. DOI: 10.1016/j.soncn.2019.08.002.
[14]
Patel D, McKay R, Kellogg Parsons J. Immunotherapy for localized prostate cancer: the next frontier?[J]. Urol Clin North Am, 2020, 47(4): 443-456. DOI: 10.1016/j.ucl.2020.07.008.
[15]
Gulley JL, Borre M, Vogelzang NJ, et al. Phase III trial of PROSTVAC in asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer[J]. J Clin Oncol, 2019, 37(13): 1051-1061. DOI: 10.1200/JCO.18.02031.
[16]
Bagchi S, Yuan R, Engleman EG. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance[J]. Annu Rev Pathol, 2021, 16: 223-249. DOI: 10.1146/annurev-pathol-042020-042741.
[17]
Pan J, Ma Z, Liu B, et al. Identification of cancer-associated fibroblasts subtypes in prostate cancer[J]. Front Immunol, 2023, 14: 1133160. DOI: 10.3389/fimmu.2023.1133160.
[18]
Zhao D, Cai L, Lu X, et al. Chromatin regulator CHD1 remodels the immunosuppressive tumor microenvironment in PTEN-deficient prostate cancer[J]. Cancer Discov, 2020, 10(9): 1374-1387. DOI: 10.1158/2159-8290.CD-19-1352.
[19]
Wu F, Ning H, Sun Y, et al. Integrative exploration of the mutual gene signatures and immune microenvironment between benign prostate hyperplasia and castration-resistant prostate cancer[J]. Aging Male, 2023, 26(1): 2183947. DOI: 10.1080/13685538.2023.2183947.
[20]
Nickols NG, Ganapathy E, Nguyen C, et al. The intraprostatic immune environment after stereotactic body radiotherapy is dominated by myeloid cells[J]. Prostate Cancer Prostatic Dis, 2021, 24(1): 135-139. DOI: 10.1038/s41391-020-0249-8.
[21]
Chaudagar K, Hieromnimon HM, Khurana R, et al. Reversal of lactate and PD-1-mediated macrophage immunosuppression controls growth of PTEN/p53-deficient prostate cancer[J]. Clin Cancer Res, 2023, 29(10): 1952-1968. DOI: 10.1158/1078-0432.CCR-22-3350.
[22]
Murphy S, Rahmy S, Gan D, et al. Overcome prostate cancer resistance to immune checkpoint therapy with ketogenic diet-induced epigenetic reprogramming[J]. bioRxiv, 2023: 2023.08.07.552383. DOI: 10.1101/2023.08.07.552383.
[23]
Peng S, Hu P, Xiao YT, et al. Single-cell analysis reveals EP4 as a target for restoring T-cell infiltration and sensitizing prostate cancer to immunotherapy[J]. Clin Cancer Res, 2022, 28(3): 552-567. DOI: 10.1158/1078-0432.CCR-21-0299.
[24]
Hawley JE, Obradovic AZ, Dallos MC, et al. Anti-PD-1 immunotherapy with androgen deprivation therapy induces robust immune infiltration in metastatic castration-sensitive prostate cancer[J]. Cancer Cell, 2023, 41(11): 1972-1988.e5. DOI: 10.1016/j.ccell.2023.10.006.
[25]
Song H, Lu T, Han D, et al. YAP1 inhibition induces phenotype switching of cancer-associated fibroblasts to tumor suppressive in prostate cancer[J]. Cancer Res, 2024, 84(22): 3728-3742. DOI: 10.1158/0008-5472.CAN-24-0932.
[26]
Xin S, Liu X, Li Z, et al. ScRNA-seq revealed an immunosuppression state and tumor microenvironment heterogeneity related to lymph node metastasis in prostate cancer[J]. Exp Hematol Oncol, 2023, 12(1): 49. DOI: 10.1186/s40164-023-00407-0.
[27]
Wang J, Wu W, Yuan T, et al. Tumor-associated macrophages and PD-L1 in prostate cancer: a possible key to unlocking immunotherapy efficacy[J]. Aging (Albany NY), 2024, 16(1): 445-465. DOI: 10.18632/aging.205378.
[28]
Wang X, Ma L, Pei X, et al. Comprehensive assessment of cellular senescence in the tumor microenvironment[J]. Brief Bioinform, 2022, 23(3): bbac118. DOI: 10.1093/bib/bbac118.
[29]
Adorno Febles VR, Hao Y, Ahsan A, et al. Single-cell analysis of localized prostate cancer patients links high Gleason score with an immunosuppressive profile[J]. Prostate, 2023, 83(9): 840-849. DOI: 10.1002/pros.24524.
[30]
Lyu F, Gao X, Ma M, et al. Crafting a personalized prognostic model for malignant prostate cancer patients using risk gene signatures discovered through TCGA-PRAD mining, machine learning, and single-cell RNA-sequencing[J]. Diagnostics (Basel), 2023, 13(12): 1997. DOI: 10.3390/diagnostics13121997.
[31]
Liu W, Wang M, Wang M, et al. Single-cell and bulk RNA sequencing reveal cancer-associated fibroblast heterogeneity and a prognostic signature in prostate cancer[J]. Medicine (Baltimore), 2023, 102(32): e34611. DOI: 10.1097/MD.0000000000034611.
[32]
Chen C, Luo J, Wang X. Identification of prostate cancer subtypes based on immune signature scores in bulk and single-cell transcriptomes[J]. Med Oncol, 2022, 39(9): 123. DOI: 10.1007/s12032-022-01719-7.
[33]
Li X, Zheng C, Xue X, et al. Integrated analysis of single-cell and bulk RNA sequencing identifies a signature based on macrophage marker genes involved in prostate cancer prognosis and treatment responsiveness[J]. Funct Integr Genomics, 2023, 23(2): 115. DOI: 10.1007/s10142-023-01037-9.
[34]
Zhang J, Li Z, Chen Z, et al. Comprehensive analysis of macrophage-related genes in prostate cancer by integrated analysis of single-cell and bulk RNA sequencing[J]. Aging (Albany NY), 2024, 16(8): 6809-6838. DOI: 10.18632/aging.205727.
[35]
Gao Z, Zhang N, An B, et al. Comprehensive analyses of the cancer-associated fibroblast subtypes and their score system for prediction of outcomes and immunosuppressive microenvironment in prostate cancer[J]. Cancer Cell Int, 2024, 24(1): 127. DOI: 10.1186/s12935-024-03305-5.
[36]
Li Q, Zhu J, Zhang Y, et al. Association of WHSC1/NSD2 and T-cell infiltration with prostate cancer metastasis and prognosis[J]. Sci Rep, 2023, 13(1): 21629. DOI: 10.1038/s41598-023-48906-8.
[37]
Wang Q, Feng C, Chen Y, et al. Evaluation of CD47 in the suppressive tumor microenvironment and immunotherapy in prostate cancer[J]. J Immunol Res, 2023, 2023: 2473075. DOI: 10.1155/2023/2473075.
[38]
Liang H, Zhang L, Liu Z, et al. Upregulation of TLR5 indicates a favorable prognosis in prostate cancer[J]. Prostate, 2023, 83(11): 1035-1045. DOI: 10.1002/pros.24545.
[39]
Wong HY, Sheng Q, Hesterberg AB, et al. Single cell analysis of cribriform prostate cancer reveals cell intrinsic and tumor microenvironmental pathways of aggressive disease[J]. Nat Commun, 2022, 13(1): 6036. DOI: 10.1038/s41467-022-33780-1.
[40]
De Vargas Roditi L, Jacobs A, Rueschoff JH, et al. Single-cell proteomics defines the cellular heterogeneity of localized prostate cancer[J]. Cell Rep Med, 2022, 3(4): 100604. DOI: 10.1016/j.xcrm.2022.100604.
[41]
Tshering LF, Luo F, Russ S, et al. Immune mechanisms shape the clonal landscape during early progression of prostate cancer[J]. Dev Cell, 2023, 58(12): 1071-1086.e8. DOI: 10.1016/j.devcel.2023.04.010.
[42]
Bilusic M, Madan RA, Gulley JL. Immunotherapy of prostate cancer: facts and hopes[J]. Clin Cancer Res, 2017, 23(22): 6764-6770. DOI: 10.1158/1078-0432.CCR-17-0019.
[43]
朱孝仁, 陈敏斌, 姜鉴倬, 等.基于单细胞测序探究去势抵抗性前列腺癌肿瘤微环境及细胞间通讯相关信号分子[J].江苏大学学报(医学版), 2024, 34(6): 497-506. DOI: 10.13312/j.issn.1671-7783.y240003.
[44]
Zhu W, Zeng H, Huang J, et al. Integrated machine learning identifies epithelial cell marker genes for improving outcomes and immunotherapy in prostate cancer[J]. J Transl Med, 2023, 21(1): 782. DOI: 10.1186/s12967-023-04633-2.
[45]
Miao M, Song Y, Jin M, et al. Single-cell RNA combined with bulk RNA analysis to explore oxidative stress and energy metabolism factors and found a new prostate cancer oncogene MXRA8[J]. Aging (Albany NY), 2024, 16(5): 4469-4502. DOI: 10.18632/aging.205599.
[46]
Wen XY, Wang RY, Yu B, et al. Integrating single-cell and bulk RNA sequencing to predict prognosis and immunotherapy response in prostate cancer[J]. Sci Rep, 2023, 13(1): 15597. DOI: 10.1038/s41598-023-42858-9.
[47]
Li T, Zhou Z, Xie Z, et al. Identification and validation of cancer-associated fibroblast-related subtypes and the prognosis model of biochemical recurrence in prostate cancer based on single-cell and bulk RNA sequencing[J]. J Cancer Res Clin Oncol, 2023, 149(13): 11379-11395. DOI: 10.1007/s00432-023-05011-7.
[48]
Zhang X, Hong B, Sun Z, et al. Development and validation of a circulating tumor cells-related signature focusing on biochemical recurrence and immunotherapy response in prostate cancer[J]. Heliyon, 2023, 9(12): e22648. DOI: 10.1016/j.heliyon.2023.e22648.
[1] 陈隆, 段晓鑫, 王思卓, 董胜利. 胃癌免疫治疗的现状[J/OL]. 中华普通外科学文献(电子版), 2025, 19(03): 177-182.
[2] 赵海涛. 进展期胆管癌治疗探索及展望[J/OL]. 中华普通外科学文献(电子版), 2025, 19(02): 110-110.
[3] 李博, 翟炜, 郑军华. CD70在肾细胞癌精准诊疗中的价值[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 399-403.
[4] 陈琼, 吴卓龙, 黄吉炜. 免疫治疗在局部进展期肾癌围手术期治疗中的应用进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 418-422.
[5] 刘新锋, 邓煜麟, 刘孝德, 闫道先, 石双胜, 黄德成, 刘悦, 刘学斌, 许朋, 董传江. 肥大细胞免疫球蛋白样受体1在肾透明细胞癌中的表达及临床意义[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 483-491.
[6] 张辉, 林金铭, 郭高伟, 李鑫基, 张伟, 黄沛东, 郑长征, 陈晓生, 卢勇. 广东省医学会泌尿外科疑难病例多学科会诊(第17期)——右肾巨大肿瘤并腔静脉癌栓和髂血管血栓[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 532-538.
[7] 张嘉炜, 吴宇光, 余维东, 陈江明, 杨诚, 熊茂明. 前列腺MRI参数及临床因素与机器人前列腺癌根治术后腹股沟疝发生的相关性研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(03): 258-264.
[8] 王少军, 黄丛秀, 刘彩霞, 苏乌云. 阿得贝利单抗治疗肺大细胞神经内分泌癌伴乳腺转移1例[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 494-496.
[9] 柳凯, 李向各, 王成, 汤润. ZEB1 通过调控Wnt/β-catenin 信号通路促进前列腺癌细胞增殖、迁移和侵袭[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(03): 157-166.
[10] 杨钰泽, 徐家豪, 杨一石, 王明达, 杨田. 肝细胞癌新辅助治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 515-521.
[11] 刘晓萍, 汪嵘嵘, 吴佳慧, 吴紫云, 周伯宣. 多组学分析HAPLN1与肝癌预后及免疫细胞浸润关系[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 609-618.
[12] 龙吟, 何晓东, 廖建国, 黄珏, 张磊. 高复发风险肝癌患者术后靶向免疫治疗的安全性及疗效[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(03): 379-386.
[13] 沈汶娟, 潘怡, 董林, 邹霜梅. 中国微卫星不稳定大肠癌患者临床病理特征分析[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(03): 251-258.
[14] 张传鹏, 张瑜廉, 党韩寒, 何昆, 陈鹏宇, 张昀昇, 张黎, 于炎冰. 胶质母细胞瘤免疫治疗挑战与cGAS-STING通路纳米策略研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(03): 153-160.
[15] 宋陈晨, 梁天赐, 赵悦, 张超贻, 王辉, 问婷芝, 戎彪学. X 型胶原α1 在恶性肿瘤中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(03): 221-228.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?