[1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
|
[2] |
Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023[J]. CA A Cancer J Clin, 2023, 73(1): 17-48. DOI: 10.3322/caac.21763.
|
[3] |
He H, Liang L, Han D, et al. Different trends in the incidence and mortality rates of prostate cancer between China and the USA: a joinpoint and age-period-cohort analysis[J]. Front Med (Lausanne), 2022, 9: 824464. DOI: 10.3389/fmed.2022.824464.
|
[4] |
Shi W, Wang Y, Zhao Y, et al. Immune checkpoint B7-H3 is a therapeutic vulnerability in prostate cancer harboring PTEN and TP53 deficiencies[J]. Sci Transl Med, 2023, 15(695): eadf6724. DOI: 10.1126/scitranslmed.adf6724.
|
[5] |
Yasen A, Aini A, Wang H, et al. Progress and applications of single-cell sequencing techniques[J]. Infect Genet Evol, 2020, 80: 104198. DOI: 10.1016/j.meegid.2020.104198.
|
[6] |
Tang X, Huang Y, Lei J, et al. The single-cell sequencing: new developments and medical applications[J]. Cell Biosci, 2019, 9: 53. DOI: 10.1186/s13578-019-0314-y.
|
[7] |
|
[8] |
|
[9] |
Chen S, Zhu G, Yang Y, et al. Single-cell analysis reveals transcriptomic remodellings in distinct cell types that contribute to human prostate cancer progression[J]. Nat Cell Biol, 2021, 23(1): 87-98. DOI: 10.1038/s41556-020-00613-6.
|
[10] |
Tuong ZK, Loudon KW, Berry B, et al. Resolving the immune landscape of human prostate at a single-cell level in health and cancer[J]. Cell Rep, 2021, 37(12): 110132. DOI: 10.1016/j.celrep.2021.110132.
|
[11] |
Zhang Y, Fan A, Li Y, et al. Single-cell RNA sequencing reveals that HSD17B2 in cancer-associated fibroblasts promotes the development and progression of castration-resistant prostate cancer[J]. Cancer Lett, 2023, 566: 216244. DOI: 10.1016/j.canlet.2023.216244.
|
[12] |
Siefert JC, Cioni B, Muraro MJ, et al. The prognostic potential of human prostate cancer-associated macrophage subtypes as revealed by single-cell transcriptomics[J]. Mol Cancer Res, 2021, 19(10): 1778-1791. DOI: 10.1158/1541-7786.MCR-20-0740.
|
[13] |
Abbott M, Ustoyev Y. Cancer and the immune system: the history and background of immunotherapy[J]. Semin Oncol Nurs, 2019, 35(5): 150923. DOI: 10.1016/j.soncn.2019.08.002.
|
[14] |
Patel D, McKay R, Kellogg Parsons J. Immunotherapy for localized prostate cancer: the next frontier?[J]. Urol Clin North Am, 2020, 47(4): 443-456. DOI: 10.1016/j.ucl.2020.07.008.
|
[15] |
Gulley JL, Borre M, Vogelzang NJ, et al. Phase III trial of PROSTVAC in asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer[J]. J Clin Oncol, 2019, 37(13): 1051-1061. DOI: 10.1200/JCO.18.02031.
|
[16] |
Bagchi S, Yuan R, Engleman EG. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance[J]. Annu Rev Pathol, 2021, 16: 223-249. DOI: 10.1146/annurev-pathol-042020-042741.
|
[17] |
Pan J, Ma Z, Liu B, et al. Identification of cancer-associated fibroblasts subtypes in prostate cancer[J]. Front Immunol, 2023, 14: 1133160. DOI: 10.3389/fimmu.2023.1133160.
|
[18] |
Zhao D, Cai L, Lu X, et al. Chromatin regulator CHD1 remodels the immunosuppressive tumor microenvironment in PTEN-deficient prostate cancer[J]. Cancer Discov, 2020, 10(9): 1374-1387. DOI: 10.1158/2159-8290.CD-19-1352.
|
[19] |
Wu F, Ning H, Sun Y, et al. Integrative exploration of the mutual gene signatures and immune microenvironment between benign prostate hyperplasia and castration-resistant prostate cancer[J]. Aging Male, 2023, 26(1): 2183947. DOI: 10.1080/13685538.2023.2183947.
|
[20] |
Nickols NG, Ganapathy E, Nguyen C, et al. The intraprostatic immune environment after stereotactic body radiotherapy is dominated by myeloid cells[J]. Prostate Cancer Prostatic Dis, 2021, 24(1): 135-139. DOI: 10.1038/s41391-020-0249-8.
|
[21] |
Chaudagar K, Hieromnimon HM, Khurana R, et al. Reversal of lactate and PD-1-mediated macrophage immunosuppression controls growth of PTEN/p53-deficient prostate cancer[J]. Clin Cancer Res, 2023, 29(10): 1952-1968. DOI: 10.1158/1078-0432.CCR-22-3350.
|
[22] |
Murphy S, Rahmy S, Gan D, et al. Overcome prostate cancer resistance to immune checkpoint therapy with ketogenic diet-induced epigenetic reprogramming[J]. bioRxiv, 2023: 2023.08.07.552383. DOI: 10.1101/2023.08.07.552383.
|
[23] |
Peng S, Hu P, Xiao YT, et al. Single-cell analysis reveals EP4 as a target for restoring T-cell infiltration and sensitizing prostate cancer to immunotherapy[J]. Clin Cancer Res, 2022, 28(3): 552-567. DOI: 10.1158/1078-0432.CCR-21-0299.
|
[24] |
Hawley JE, Obradovic AZ, Dallos MC, et al. Anti-PD-1 immunotherapy with androgen deprivation therapy induces robust immune infiltration in metastatic castration-sensitive prostate cancer[J]. Cancer Cell, 2023, 41(11): 1972-1988.e5. DOI: 10.1016/j.ccell.2023.10.006.
|
[25] |
Song H, Lu T, Han D, et al. YAP1 inhibition induces phenotype switching of cancer-associated fibroblasts to tumor suppressive in prostate cancer[J]. Cancer Res, 2024, 84(22): 3728-3742. DOI: 10.1158/0008-5472.CAN-24-0932.
|
[26] |
Xin S, Liu X, Li Z, et al. ScRNA-seq revealed an immunosuppression state and tumor microenvironment heterogeneity related to lymph node metastasis in prostate cancer[J]. Exp Hematol Oncol, 2023, 12(1): 49. DOI: 10.1186/s40164-023-00407-0.
|
[27] |
Wang J, Wu W, Yuan T, et al. Tumor-associated macrophages and PD-L1 in prostate cancer: a possible key to unlocking immunotherapy efficacy[J]. Aging (Albany NY), 2024, 16(1): 445-465. DOI: 10.18632/aging.205378.
|
[28] |
Wang X, Ma L, Pei X, et al. Comprehensive assessment of cellular senescence in the tumor microenvironment[J]. Brief Bioinform, 2022, 23(3): bbac118. DOI: 10.1093/bib/bbac118.
|
[29] |
Adorno Febles VR, Hao Y, Ahsan A, et al. Single-cell analysis of localized prostate cancer patients links high Gleason score with an immunosuppressive profile[J]. Prostate, 2023, 83(9): 840-849. DOI: 10.1002/pros.24524.
|
[30] |
Lyu F, Gao X, Ma M, et al. Crafting a personalized prognostic model for malignant prostate cancer patients using risk gene signatures discovered through TCGA-PRAD mining, machine learning, and single-cell RNA-sequencing[J]. Diagnostics (Basel), 2023, 13(12): 1997. DOI: 10.3390/diagnostics13121997.
|
[31] |
Liu W, Wang M, Wang M, et al. Single-cell and bulk RNA sequencing reveal cancer-associated fibroblast heterogeneity and a prognostic signature in prostate cancer[J]. Medicine (Baltimore), 2023, 102(32): e34611. DOI: 10.1097/MD.0000000000034611.
|
[32] |
Chen C, Luo J, Wang X. Identification of prostate cancer subtypes based on immune signature scores in bulk and single-cell transcriptomes[J]. Med Oncol, 2022, 39(9): 123. DOI: 10.1007/s12032-022-01719-7.
|
[33] |
Li X, Zheng C, Xue X, et al. Integrated analysis of single-cell and bulk RNA sequencing identifies a signature based on macrophage marker genes involved in prostate cancer prognosis and treatment responsiveness[J]. Funct Integr Genomics, 2023, 23(2): 115. DOI: 10.1007/s10142-023-01037-9.
|
[34] |
Zhang J, Li Z, Chen Z, et al. Comprehensive analysis of macrophage-related genes in prostate cancer by integrated analysis of single-cell and bulk RNA sequencing[J]. Aging (Albany NY), 2024, 16(8): 6809-6838. DOI: 10.18632/aging.205727.
|
[35] |
Gao Z, Zhang N, An B, et al. Comprehensive analyses of the cancer-associated fibroblast subtypes and their score system for prediction of outcomes and immunosuppressive microenvironment in prostate cancer[J]. Cancer Cell Int, 2024, 24(1): 127. DOI: 10.1186/s12935-024-03305-5.
|
[36] |
Li Q, Zhu J, Zhang Y, et al. Association of WHSC1/NSD2 and T-cell infiltration with prostate cancer metastasis and prognosis[J]. Sci Rep, 2023, 13(1): 21629. DOI: 10.1038/s41598-023-48906-8.
|
[37] |
Wang Q, Feng C, Chen Y, et al. Evaluation of CD47 in the suppressive tumor microenvironment and immunotherapy in prostate cancer[J]. J Immunol Res, 2023, 2023: 2473075. DOI: 10.1155/2023/2473075.
|
[38] |
Liang H, Zhang L, Liu Z, et al. Upregulation of TLR5 indicates a favorable prognosis in prostate cancer[J]. Prostate, 2023, 83(11): 1035-1045. DOI: 10.1002/pros.24545.
|
[39] |
Wong HY, Sheng Q, Hesterberg AB, et al. Single cell analysis of cribriform prostate cancer reveals cell intrinsic and tumor microenvironmental pathways of aggressive disease[J]. Nat Commun, 2022, 13(1): 6036. DOI: 10.1038/s41467-022-33780-1.
|
[40] |
De Vargas Roditi L, Jacobs A, Rueschoff JH, et al. Single-cell proteomics defines the cellular heterogeneity of localized prostate cancer[J]. Cell Rep Med, 2022, 3(4): 100604. DOI: 10.1016/j.xcrm.2022.100604.
|
[41] |
Tshering LF, Luo F, Russ S, et al. Immune mechanisms shape the clonal landscape during early progression of prostate cancer[J]. Dev Cell, 2023, 58(12): 1071-1086.e8. DOI: 10.1016/j.devcel.2023.04.010.
|
[42] |
Bilusic M, Madan RA, Gulley JL. Immunotherapy of prostate cancer: facts and hopes[J]. Clin Cancer Res, 2017, 23(22): 6764-6770. DOI: 10.1158/1078-0432.CCR-17-0019.
|
[43] |
|
[44] |
Zhu W, Zeng H, Huang J, et al. Integrated machine learning identifies epithelial cell marker genes for improving outcomes and immunotherapy in prostate cancer[J]. J Transl Med, 2023, 21(1): 782. DOI: 10.1186/s12967-023-04633-2.
|
[45] |
Miao M, Song Y, Jin M, et al. Single-cell RNA combined with bulk RNA analysis to explore oxidative stress and energy metabolism factors and found a new prostate cancer oncogene MXRA8[J]. Aging (Albany NY), 2024, 16(5): 4469-4502. DOI: 10.18632/aging.205599.
|
[46] |
Wen XY, Wang RY, Yu B, et al. Integrating single-cell and bulk RNA sequencing to predict prognosis and immunotherapy response in prostate cancer[J]. Sci Rep, 2023, 13(1): 15597. DOI: 10.1038/s41598-023-42858-9.
|
[47] |
Li T, Zhou Z, Xie Z, et al. Identification and validation of cancer-associated fibroblast-related subtypes and the prognosis model of biochemical recurrence in prostate cancer based on single-cell and bulk RNA sequencing[J]. J Cancer Res Clin Oncol, 2023, 149(13): 11379-11395. DOI: 10.1007/s00432-023-05011-7.
|
[48] |
Zhang X, Hong B, Sun Z, et al. Development and validation of a circulating tumor cells-related signature focusing on biochemical recurrence and immunotherapy response in prostate cancer[J]. Heliyon, 2023, 9(12): e22648. DOI: 10.1016/j.heliyon.2023.e22648.
|