切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2025, Vol. 19 ›› Issue (05) : 579 -585. doi: 10.3877/cma.j.issn.1674-3253.2025.05.006

临床研究

基于GEO数据库探究前列腺癌淋巴结转移和内脏转移中基因差异及预后
陈育纯1,2, 王倩倩2, 彭天明2, 李勇2, 田凯文2, 刘志烨2, 吴坤林2, 蒲小勇2, 刘久敏1,2,()   
  1. 1510080 广州,广东省心血管病研究所
    2510080 广州,南方医科大学附属广东省人民医院(广东省医学科学院)泌尿外科
  • 收稿日期:2024-09-05 出版日期:2025-10-01
  • 通信作者: 刘久敏
  • 基金资助:
    广东省财政厅项目(KS01220220267); 广州市科技基础与应用基础研究项目(202102080004); 广东省财政厅项目(KS0120220271)

The exploration of differential genes and prognosis in lymph node metastasis and visceral metastasis of prostate cancer based on GEO database

Yuchun Chen1,2, Qianqian Wang2, Tianming Peng2, Yong Li2, Kaiwen Tian2, Zhiye Liu2, Kunlin Wu2, Xiaoyong Pu2, Jiumin Liu1,2,()   

  1. 1Guangdong Cardiovascular Institute, 510080 Guangzhou, China
    2Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
  • Received:2024-09-05 Published:2025-10-01
  • Corresponding author: Jiumin Liu
引用本文:

陈育纯, 王倩倩, 彭天明, 李勇, 田凯文, 刘志烨, 吴坤林, 蒲小勇, 刘久敏. 基于GEO数据库探究前列腺癌淋巴结转移和内脏转移中基因差异及预后[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 579-585.

Yuchun Chen, Qianqian Wang, Tianming Peng, Yong Li, Kaiwen Tian, Zhiye Liu, Kunlin Wu, Xiaoyong Pu, Jiumin Liu. The exploration of differential genes and prognosis in lymph node metastasis and visceral metastasis of prostate cancer based on GEO database[J/OL]. Chinese Journal of Endourology(Electronic Edition), 2025, 19(05): 579-585.

目的

基于GEO数据库,使用生物信息学方法挖掘前列腺癌淋巴结转移患者和内脏转移患者相关的差异表达基因,为前列腺癌转移诊疗提供新思路。

方法

从GEO数据库中下载数据集GSE6752,筛选前列腺癌淋巴结转移患者和内脏转移患者的差异表达基因,利用STRING数据库和Cytoscape软件构建蛋白互作网络,从差异表达基因中筛选出关键基因。利用R软件对数据集GSE6752进行数据处理分析关键基因在前列腺癌淋巴结转移和内脏转移的表达量。利用TCGA、GEPIA数据库对关键基因与PSA水平、Gleason评分的相关性及预后进行分析。

结果

筛选前列腺癌淋巴结转移和内脏转移差异表达基因71个,即相对于淋巴结转移,内脏转移中有41个表达上调,30个表达下调。。获得关键基因FTCD、GBA2、PRKCA在前列腺癌内脏转移患者中表达高于淋巴结转移患者,且FTCD和GBA2基因与前列腺癌预后负相关。

结论

FTCD、GBA2基因与前列腺癌预后负相关,可能在前列腺癌不同转移方式的发生发展分子机制中发挥重要作用。

Objective

Based on the GEO database, bioinformatics methods were used to mine differentially expressed genes related to patients with lymph node metastasis and patients with visceral metastasis of prostate cancer, providing new ideas for prostate cancer metastasis diagnosis and treatment.

Methods

The dataset GSE6752 was downloaded from the GEO database to screen the differentially expressed genes in patients with prostate cancer lymph node metastasis and patients with visceral metastasis, and the protein interactions network was constructed by using the STRING database and Cytoscape software to screen the key genes from the differentially expressed genes. The expression levels of key genes in prostate cancer lymph node metastasis and visceral metastasis were analyzed by data processing of data set GSE6752 using R software. The correlation between key genes and PSA level, Gleason score and prognosis were analyzed using TCGA and GEPIA databases.

Results

71 genes were screened for differentially expressed genes in lymph node metastasis and visceral metastasis of prostate cancer, compared with lymph node metastasis, 41 genes were up-regulated and 30 genes were down-regulated in visceral metastasis. The key genes FTCD, GBA2 and PRKCA were screened and found to be more highly expressed in patients with visceral metastasis of prostate cancer than in those with lymph node metastasis, and were negatively correlated with the prognosis of prostate cancer.

Conclusion

FTCD, GBA2 genes are negatively associated with the prognosis of prostate cancer and may play an important role in the molecular mechanism of the development of different metastatic modalities of prostate cancer.

图2 GSE6752数据集基于MCC算法得分前10的关键基因筛选结果
图3 关键基因在前列腺肿瘤组织和正常组织中的表达差异注:基于GEPIA数据库肿瘤组织(n=492),正常组织(n=152);*P<0.05
图4 关键基因在前列腺癌淋巴结转移和内脏转移之间的表达量注:***P<0.001,**P<0.01
图5 前列腺癌患者不同关键基因的表达与PSA水平的关系
图6 前列腺癌患者不同关键基因的表达与Gleason评分的关系注:**P<0.01
图7 前列腺癌患者关键基因表达与无病生存期的Kaplan-Meier生存曲线
[1]
Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023[J]. CA A Cancer J Clin, 2023, 73(1): 17-48. DOI: 10.3322/caac.21763.
[2]
Xia C, Dong X, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J (Engl), 2022, 135(5): 584-590. DOI: 10.1097/CM9.0000000000002108.
[3]
Zheng R, Zhang S, Zeng H, et al. Cancer incidence and mortality in China, 2016[J]. J Natl Cancer Cent, 2022, 2(1): 1-9. DOI: 10.1016/j.jncc.2022.02.002.
[4]
Ahmed ME, Mahmoud AM, Reitano G, et al. Survival patterns based on first-site-specific visceral metastatic prostate cancer: are outcomes of visceral metastases the same?[J]. Eur Urol Open Sci, 2024, 66: 38-45. DOI: 10.1016/j.euros.2024.06.006.
[5]
Rud E, Noor D, Galtung KF, et al. Validating the screening criteria for bone metastases in treatment-naïve unfavorable intermediate and high-risk prostate cancer - the prevalence and location of bone- and lymph node metastases[J]. Eur Radiol, 2022, 32(12): 8266-8275. DOI: 10.1007/s00330-022-08945-7.
[6]
Gandaglia G, Abdollah F, Schiffmann J, et al. Distribution of metastatic sites in patients with prostate cancer: a population-based analysis[J]. Prostate, 2014, 74(2): 210-216. DOI: 10.1002/pros.22742.
[7]
吴洪瀚, 范青洪, 瓦庆德. 前列腺癌骨转移治疗研究进展[J]. 遵义医科大学学报, 2024, 47(4): 424-431. DOI: 10.14169/j.cnki.zunyixuebao.2024.0052.
[8]
Moshref L, Abidullah M, Czaykowski P, et al. Prostate cancer metastasis to stomach: a case report and review of literature[J]. Curr Oncol, 2023, 30(4): 3901-3914. DOI: 10.3390/curroncol30040295.
[9]
徐一方, 韩海心, 杨旭. HPV16/18型感染与前列腺癌发病、分期、淋巴转移及肿瘤标志物的相关性[J]. 热带医学杂志, 2023, 23(1): 75-78, 83. DOI: 10.3969/j.issn.1672-3619.2023.01.017.
[10]
Labib OH, Harb OA, Khalil OH, et al. The diagnostic value of arginase-1, FTCD, and MOC-31 expression in early detection of hepatocellular carcinoma (HCC) and in differentiation between HCC and metastatic adenocarcinoma to the liver[J]. J Gastrointest Cancer, 2020, 51(1): 88-101. DOI: 10.1007/s12029-019-00211-2.
[11]
Kanarek N, Keys HR, Cantor JR, et al. Histidine catabolism is a major determinant of methotrexate sensitivity[J]. Nature, 2018, 559(7715): 632-636. DOI: 10.1038/s41586-018-0316-7.
[12]
Chen J, Chen Z, Huang Z, et al. Formiminotransferase cyclodeaminase suppresses hepatocellular carcinoma by modulating cell apoptosis, DNA damage, and phosphatidylinositol 3-kinases (PI3K)/Akt signaling pathway[J]. Med Sci Monit, 2019, 25: 4474-4484. DOI: 10.12659/MSM.916202.
[13]
Kaneko Y, Shimoda K, Ayala R, et al. p97 and p47 function in membrane tethering in cooperation with FTCD during mitotic Golgi reassembly[J]. EMBO J, 2021, 40(9): e105853. DOI: 10.15252/embj.2020105853.
[14]
Tian Y, Lu J, Qiao Y. A metabolism-associated gene signature for prognosis prediction of hepatocellular carcinoma[J]. Front Mol Biosci, 2022, 9: 988323. DOI: 10.3389/fmolb.2022.988323.
[15]
Zhang W, Wu C, Ni R, et al. Formimidoyltransferase cyclodeaminase prevents the starvation-induced liver hepatomegaly and dysfunction through downregulating mTORC1[J]. PLoS Genet, 2021, 17(12): e1009980. DOI: 10.1371/journal.pgen.1009980.
[16]
Xiao J, Wang J, Zhou C, et al. Development and validation of a propionate metabolism-related gene signature for prognostic prediction of hepatocellular carcinoma[J]. J Hepatocell Carcinoma, 2023, 10: 1673-1687. DOI: 10.2147/JHC.S420614.
[17]
Sorli SC, Colié S, Albinet V, et al. The nonlysosomal β-glucosidase GBA2 promotes endoplasmic reticulum stress and impairs tumorigenicity of human melanoma cells[J]. FASEB J, 2013, 27(2): 489-498. DOI: 10.1096/fj.12-215152.
[18]
Niu C, Li X, et al. Identification of novel prognostic biomarkers for colorectal cancer by bioinformatics analysis[J]. Turk J Gastroenterol, 2024, 35(1): 61-72. DOI: 10.5152/tjg.2024.23264.
[19]
Taghizadeh E, Heydarheydari S, Saberi A, et al. Breast cancer prediction with transcriptome profiling using feature selection and machine learning methods[J]. BMC Bioinformatics, 2022, 23(1): 410. DOI: 10.1186/s12859-022-04965-8.
[20]
Liu R, Chu W, Liu X, et al. Establishment of Golgi apparatus-related genes signature to predict the prognosis and immunotherapy response in gastric cancer patients[J]. Medicine (Baltimore), 2024, 103(11): e37439. DOI: 10.1097/MD.0000000000037439.
[21]
Wheeler S, Sillence DJ. Niemann-pick type C disease: cellular pathology and pharmacotherapy[J]. J Neurochem, 2020, 153(6): 674-692. DOI: 10.1111/jnc.14895.
[22]
Fu Q, Song X, Liu Z, et al. miRomics and proteomics reveal a miR-296-3p/PRKCA/FAK/Ras/c-Myc feedback loop modulated by HDGF/DDX5/β-catenin complex in lung adenocarcinoma[J]. Clin Cancer Res, 2017, 23(20): 6336-6350. DOI: 10.1158/1078-0432.CCR-16-2813.
[23]
Jiang H, Fu Q, Song X, et al. HDGF and PRKCA upregulation is associated with a poor prognosis in patients with lung adenocarcinoma[J]. Oncol Lett, 2019, 18(5): 4936-4946. DOI: 10.3892/ol.2019.10812.
[24]
Salama MF, Liu M, Clarke CJ, et al. PKCα is required for Akt-mTORC1 activation in non-small cell lung carcinoma (NSCLC) with EGFR mutation[J]. Oncogene, 2019, 38(48): 7311-7328. DOI: 10.1038/s41388-019-0950-z.
[25]
Liu J, Li J. PKCα and Netrin-1/UNC5B positive feedback control in relation with chemical therapy in bladder cancer[J]. Eur Rev Med Pharmacol Sci, 2020, 24(4): 1712-1717. DOI: 10.26355/eurrev_202002_20346.
[26]
Sun T, Zhang P, Zhang Q, et al. Transcriptome analysis reveals PRKCA as a potential therapeutic target for overcoming cisplatin resistance in lung cancer through ferroptosis[J]. Heliyon, 2024, 10(10): e30780. DOI: 10.1016/j.heliyon.2024.e30780.
[27]
Zhao J, Tian H, Zhao X, et al. PKCα induced the generation of extracellular vesicles in activated platelets to promote breast cancer metastasis[J]. Int J Biol Sci, 2024, 20(10): 3956-3971. DOI: 10.7150/ijbs.89822.
[28]
王素杰. PRKCA调控食管鳞癌增殖迁移侵袭的分子机制及临床意义[D]. 新乡: 新乡医学院, 2021. DOI: 10.27434/d.cnki.gxxyc.2021.000216.
[29]
Guo Y, Bao Y, Ma M, et al. Clinical significance of the correlation between PLCE 1 and PRKCA in esophageal inflammation and esophageal carcinoma[J]. Oncotarget, 2017, 8(20): 33285-33299. DOI: 10.18632/oncotarget.16635.
[1] 罗兵, 董凤群, 牛艺臻, 王锟, 程志华, 刘宏强. 胎儿超声心动图在单纯性肺动脉瓣狭窄及预后评估中的价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 740-747.
[2] 钱龙, 蔡大明, 王行舟, 艾世超, 胡琼源, 孙锋, 宋鹏, 王峰, 王萌, 陆晓峰, 朱欢欢, 沈晓菲, 管文贤. 局部不可切除胃癌转化治疗(联合免疫治疗)后淋巴结转移的相关危险因素分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 624-627.
[3] 贺雅莉, 黄丽, 杨培娟. 功能保留手术在低位直肠癌治疗中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 701-704.
[4] 杨志, 夏雪峰, 管文贤. DeepSurv深度学习模型辅助胃癌术后精准化疗策略研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 501-505.
[5] 徐其银, 韩尚志. 术前结合术后营养支持对直肠癌患者康复的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 543-546.
[6] 张聪, 李成. 胰头区恶性肿瘤外科手术预后现状及相关因素的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 574-578.
[7] 张蔚, 李运涛, 尚培中, 贾志芳, 张伟, 郭伟林. 腹腔镜根治术治疗转移性胆囊癌一例报道[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 589-590.
[8] 陈思鹭, 杨兴, 李学松, 谌诚. 靶向PSMA的荧光探针在前列腺癌显像中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 547-551.
[9] 潘麒文, 何立儒. 前列腺癌放射治疗前沿进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 552-557.
[10] 杨硕, 郭佳. 液体活检在前列腺癌进展监测中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 558-564.
[11] 张燕, 许丁伟, 胡满琴, 黄昊扬, 宋光娜, 黄洁. 术前免疫炎症指标对肝癌肝切除术患者生存预后的预测价值[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 707-715.
[12] 方兴保, 庞国莲, 李月宏, 蔡艳. 基于多组学分析MCAM在肝癌中表达及其与生存预后和免疫细胞浸润的关系[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 716-724.
[13] 郑哲宇, 张磊, 张大伟, 潘卫东, 黄晓明. 全腹腔镜下ALPPS治疗结直肠癌肝转移的安全性和疗效[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 748-753.
[14] 张广权, 洪生杰, 陈显育, 王继才, 翟航, 吴芬芳, 史宪杰. 生物信息学分析内质网应激相关基因在非酒精性脂肪性肝炎发病中的作用[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 761-769.
[15] 杨金通, 付必莽, 马朝宇, 兰楮, 王朝, 李春满. 肝细胞癌伴淋巴结转移一例[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 770-774.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?