切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2025, Vol. 19 ›› Issue (05) : 645 -652. doi: 10.3877/cma.j.issn.1674-3253.2025.05.016

临床研究

肌层浸润性膀胱癌患者根治性膀胱切除术预后列线图模型的构建及验证
腾鹏1,(), 田景昌2, 鄂春翔1, 向阳1, 田伯宇1   
  1. 1161000 黑龙江,齐齐哈尔市第一医院北院泌尿外科
    2116000 辽宁,大连大学附属新华医院泌尿外科
  • 收稿日期:2025-01-17 出版日期:2025-10-01
  • 通信作者: 腾鹏
  • 基金资助:
    齐齐哈尔市科技计划创新激励项目(CSFGG-2023042)

Development and validation of a prognostic nomogram model for patients with muscle-invasive bladder cancer after radical cystectomy

Peng Teng1,(), Jingchang Tian2, Chunxiang E1, Yang Xiang1, Boyu Tian1   

  1. 1Department of Urology, North Hospital of the First Hospital of Qiqihar, Heilongjiang 161000, China
    2Department of Urology, Xinhua Hospital Affiliated to Dalian University, Liaoning 116000,China
  • Received:2025-01-17 Published:2025-10-01
  • Corresponding author: Peng Teng
引用本文:

腾鹏, 田景昌, 鄂春翔, 向阳, 田伯宇. 肌层浸润性膀胱癌患者根治性膀胱切除术预后列线图模型的构建及验证[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 645-652.

Peng Teng, Jingchang Tian, Chunxiang E, Yang Xiang, Boyu Tian. Development and validation of a prognostic nomogram model for patients with muscle-invasive bladder cancer after radical cystectomy[J/OL]. Chinese Journal of Endourology(Electronic Edition), 2025, 19(05): 645-652.

目的

探讨肌层浸润性膀胱癌(MIBC)患者的预后因素,并通过整合肿瘤生物学特征、骨骼肌指数与营养评价参数开发一种新型预后模型,以帮助医师更好地预测临床结局并做出合理的治疗决策。

方法

回顾性分析2017年01月至2020年12月期间于齐齐哈尔市第一医院泌尿外科接受根治性膀胱切除术的302例MIBC患者的临床资料,将研究人群随机分为建模组(n=202)与验证组(n=100)。采用单、多变量Cox回归分析筛选影响MIBC患者总体生存(OS)的因素,构建列线图模型。模型的预测性能以一致性指数(C-index)与受试者工作特性(ROC)曲线进行评估。

结果

单、多变量Cox回归分析表明,cT分期(cT3期:HR=2.175,95%CI:1.467~3.224,P<0.001;cT4期:HR=3.433,95%CI:2.020~5.834,P<0.001)、淋巴结转移(HR=2.581,95%CI:1.794~3.712,P<0.001)、淋巴血管侵犯(HR=1.715,95%CI:1.184~2.484,P=0.042)、骨骼肌指数(HR=0.960,95%CI:0.937~0.983,P=0.001)与控制营养状态评分(HR=1.175,95%CI:1.099~1.256, P<0.001)是MIBC患者的独立预后因素。根据以上变量构建列线图的C-index为0.762(95%CI:0.711~0.798),ROC曲线显示该模型预测患者1年、2年和3年生存率的曲线下面积(AUC)分别为0.773、0.887和0.876。校准曲线显示模型预测结果和实际观察之间具有良好一致性。此外,该模型对MIBC患者预后的预测价值的内部验证,其C-index为0.744 (95%CI:0.702~0.787),预测1年、2年和3年生存率的AUC分别为0.793、0.840和0.833。

结论

基于肿瘤生物学特征、骨骼肌指数与营养评价参数开发的列线图模型,为准确预测MIBC患者预后提供了一种简便、有效的工具,有望帮助医师优化对患者的临床管理。

Objective

To explore the prognostic factors of muscle-invasive bladder cancer (MIBC) patients, and develop a nomogram model based on tumor biological characteristics, skeletal muscle index and nutritional parameters, which may help surgeons to accurately predict clinical outcomes and make treatment decisions.

Methods

The clinical data of 302 MIBC patients who underwent radical cystectomy at the Department of Urology in Qiqihar First Hospital from January 2017 to December 2020 were retrospectively analyzed. The study population was randomly divided into the training group (n=202) and validation group (n=100). The univariate and multivariate Cox regression analysis were conducted to determine the predictors of overall survival (OS) for MIBC patients, and then a nomogram model was established. The predictive performance of the nomogram was evaluated by the consistency index (C-index) and receiver operation characteristic (ROC) curves, and calibration curves were plotted to evaluate its predictive accuracy.

Results

The data of univariate and multivariate Cox analysis indicated that cT stage (cT3 stage: HR=2.175, 95%CI: 1.467-3.224, P<0.001; cT4 stage: HR=3.433, 95%CI: 2.020-5.834, P<0.001), lymph node metastasis (HR=2.581, 95%CI: 1.794-3.712, P<0.001), lymphovascular invasion (HR=1.715, 95%CI: 1.184-2.484, P=0.042), skeletal muscle index (HR=0.960, 95%CI: 0.937-0.983, P=0.001) and controlling nutritional status (HR=1.175, 95%CI: 1.099-1.256, P<0.001) were independent prognostic factors for MIBC patients. A nomogram was developed according to the above five variables, with a C-index of 0.762 (95%CI: 0.711-0.798). The ROC curves showed that the area under curve (AUC) values of the nomogram for 1, 2, and 3 year survival prediction were 0.773, 0.887, and 0.876, respectively. The calibration curves showed a good consistency between the predicted probability and the actual observation. In addition, the predictive value of the nomogram model was further validated by an internal cohort. Its C-index was 0.744 (95%CI: 0.702-0.787), and the AUC values for 1, 2, and 3 year survival prediction were 0.793, 0.840, and 0.833, respectively.

Conclusion

The nomogram based on tumor biological characteristics, skeletal muscle index and nutritional parameters provides a simple and effective tool to accurately predict the survival outcome, and it might be helpful to optimize the clinical management of MIBC patients.

表1 控制营养状态(CONUT)评分
表2 建模组与验证组肌层浸润性膀胱癌患者的基线特征
表3 肌层浸润性膀胱癌患者根治术后预后因素的Cox回归分析
图1 列线图预测根治性膀胱切除术治疗MIBC患者的生存结局
图2 列线图模型对建模组肌层浸润性膀胱癌患者预后的预测价值注:a为ROC曲线;b为校准曲线
图3 列线图模型对验证组肌层浸润性膀胱癌患者预后的预测价值注:a为ROC曲线;b为校准曲线
[1]
Lenis AT, Lec PM, Chamie K, et al. Bladder cancer[J]. Jama, 2020, 324(19): 1980. DOI: 10.1001/jama.2020.17598.
[2]
Alfred Witjes J, Bruins HM, Cathomas R, et al. European association of urology guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2020 guidelines[J]. Eur Urol, 2021, 79(1): 82-104. DOI: 10.1016/j.eururo.2020.03.055.
[3]
Waraich TA, Khalid SY, Ali A, et al. Comparative outcomes of radical cystectomy in muscle-invasive bladder cancer: a systematic review and meta-analysis[J]. Cureus, 2023, 15(12): e50646. DOI: 10.7759/cureus.50646.
[4]
Kim IH, Lee HJ. Perioperative systemic treatment for muscle-invasive bladder cancer: current evidence and future perspectives[J]. Int J Mol Sci, 2021, 22(13): 7201. DOI: 10.3390/ijms22137201.
[5]
Struck JP, Hupe MC, Heinisch A, et al. RLC score (R status, lymphovascular invasion, C-reactive protein) predicts survival following radical cystectomy for muscle-invasive bladder cancer[J]. Aktuelle Urol, 2022, 53(6): 545-551. DOI: 10.1055/a-1310-3583.
[6]
Sharma M, Goto T, Yang Z, et al. The impact of perivesical lymph node metastasis on clinical outcomes of bladder cancer patients undergoing radical cystectomy[J]. BMC Urol, 2019, 19(1): 77. DOI: 10.1186/s12894-019-0507-z.
[7]
Claps F, van de Kamp MW, Mayr R, et al. Prognostic impact of variant histologies in urothelial bladder cancer treated with radical cystectomy[J]. BJU Int, 2023, 132(2): 170-180. DOI: 10.1111/bju.15984.
[8]
Perera M, McGrath S, Sengupta S, et al. Pelvic lymph node dissection during radical cystectomy for muscle-invasive bladder cancer[J]. Nat Rev Urol, 2018, 15(11): 686-692. DOI: 10.1038/s41585-018-0066-1.
[9]
Muscaritoli M, Arends J, Bachmann P, et al. ESPEN practical guideline: Clinical Nutrition in cancer[J]. Clin Nutr, 2021, 40(5): 2898-2913. DOI: 10.1016/j.clnu.2021.02.005.
[10]
Wang J, Tan S, Gianotti L, et al. Evaluation and management of body composition changes in cancer patients[J]. Nutrition, 2023, 114: 112132. DOI: 10.1016/j.nut.2023.112132.
[11]
Jiao H, Wang L, Zhou X, et al. Prognostic ability of nutritional indices for outcomes of bladder cancer: a systematic review and meta-analysis[J]. Urol Int, 2023, 107(9): 886-894. DOI: 10.1159/000531884.
[12]
Wang J, Shi H, Fan Z, et al. Prognostic nutritional index combined with NLR to construct a survival prediction model and decision analysis of patients with muscle-invasive bladder cancer after surgery[J]. Cancer Med, 2023, 12(13): 14207-14224. DOI: 10.1002/cam4.6088.
[13]
Claps F, Mir MC, van Rhijn BWG, et al. Impact of the controlling nutritional status (CONUT) score on perioperative morbidity and oncological outcomes in patients with bladder cancer treated with radical cystectomy[J]. Urol Oncol, 2023, 41(1): 49.e13-49.e49.e22. DOI: 10.1016/j.urolonc.2022.09.023.
[14]
Nemoto Y, Kondo T, Ishihara H, et al. The controlling nutritional status CONUT score in patients with advanced bladder cancer after radical cystectomy[J]. In Vivo, 2021, 35(2): 999-1006. DOI: 10.21873/invivo.12343.
[15]
Jogiat UM, Sasewich H, Turner SR, et al. Sarcopenia determined by skeletal muscle index predicts overall survival, disease-free survival, and postoperative complications in resectable esophageal cancer: a systematic review and meta-analysis[J]. Ann Surg, 2022, 276(5): e311-e318. DOI: 10.1097/SLA.0000000000005452.
[16]
Abbass T, Tsz Ho YT, Horgan PG, et al. The relationship between computed tomography derived skeletal muscle index, psoas muscle index and clinical outcomes in patients with operable colorectal cancer[J]. Clin Nutr ESPEN, 2020, 39: 104-113. DOI: 10.1016/j.clnesp.2020.07.010.
[17]
Cicione A, Simone G, Lombardo R, et al. Development of a pocket nomogram to predict cancer and disease specific survival after radical cystectomy for bladder cancer: the CRAB nomogram[J]. Clin Genitourin Cancer, 2023, 21(1): 108-114. DOI: 10.1016/j.clgc.2022.08.011.
[18]
Necchi A, Pond GR, Moschini M, et al. Development of a prediction tool for exclusive locoregional recurrence after radical cystectomy in patients with muscle-invasive bladder cancer[J]. Clin Genitourin Cancer, 2019, 17(1): 7-14.e3. DOI: 10.1016/j.clgc.2018.09.008.
[19]
中华医学会泌尿外科学分会, 中国膀胱癌联盟, 黄健, 等. 根治性膀胱切除尿流改道术中国膀胱癌联盟共识[J]. 中华泌尿外科杂志, 2021(7): 481-484. DOI: 10.3760/cma.j.cn112330-20210607-00001.
[20]
Onodera T, Goseki N, Kosaki G. Prognostic nutritional index in gastrointestinal surgery of malnourished cancer patients[J]. Nihon Geka Gakkai Zasshi, 1984, 85(9): 1001-1005.
[21]
Ignacio de Ulíbarri J, González-Madroño A, de Villar NP, et al. CONUT: a tool for controlling nutritional status. First validation in a hospital population[J]. Nutr Hosp, 2005, 20(1): 38-45.
[22]
Patel VG, Oh WK, Galsky MD. Treatment of muscle-invasive and advanced bladder cancer in 2020[J]. CA Cancer J Clin, 2020, 70(5): 404-423. DOI: 10.3322/caac.21631.
[23]
Martini A, Sfakianos JP, Renström-Koskela L, et al. The natural history of untreated muscle-invasive bladder cancer[J]. BJU Int, 2020, 125(2): 270-275. DOI: 10.1111/bju.14872.
[24]
Hensley PJ, Panebianco V, Pietzak E, et al. Contemporary staging for muscle-invasive bladder cancer: accuracy and limitations[J]. Eur Urol Oncol, 2022, 5(4): 403-411. DOI: 10.1016/j.euo.2022.04.008.
[25]
Munbauhal G, Drouin SJ, Mozer P, et al. Malnourishment in bladder cancer and the role of immunonutrition at the time of cystectomy: an overview for urologists[J]. BJU Int, 2014, 114(2): 177-184. DOI: 10.1111/bju.12529.
[26]
McMillan DC. Systemic inflammation, nutritional status and survival in patients with cancer[J]. Curr Opin Clin Nutr Metab Care, 2009, 12(3): 223-226. DOI: 10.1097/MCO.0b013e32832a7902.
[27]
Huang J, Zhao L, Wang K, et al. Controlling nutritional status score evaluates prognosis in patients with non-muscle invasive bladder cancer[J]. Cancer Control, 2021, 28: 10732748211021078. DOI: 10.1177/10732748211021078.
[28]
Xiong T, Ye X, Zhu G, et al. Prognostic value of Controlling Nutritional Status score for postoperative complications and biochemical recurrence in prostate cancer patients undergoing laparoscopic radical prostatectomy[J]. Curr Urol, 2024, 18(1): 43-48. DOI: 10.1097/CU9.0000000000000231.
[29]
Peng L, Meng C, Li J, et al. The prognostic significance of controlling nutritional status (CONUT) score for surgically treated renal cell cancer and upper urinary tract urothelial cancer: a systematic review and meta-analysis[J]. Eur J Clin Nutr, 2022, 76(6): 801-810. DOI: 10.1038/s41430-021-01014-0.
[30]
Niu X, Zhu Z, Bao J. Prognostic significance of pretreatment controlling nutritional status score in urological cancers: a systematic review and meta-analysis[J]. Cancer Cell Int, 2021, 21(1): 126. DOI: 10.1186/s12935-021-01813-2.
[31]
Bradshaw PT. Body composition and cancer survival: a narrative review[J]. Br J Cancer, 2024, 130(2): 176-183. DOI: 10.1038/s41416-023-02470-0.
[32]
Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis[J]. Age Ageing, 2019, 48(1): 16-31. DOI: 10.1093/ageing/afy169.
[33]
Ha YS, Kim SW, Kwon TG, et al. Decrease in skeletal muscle index 1 year after radical cystectomy as a prognostic indicator in patients with urothelial bladder cancer[J]. Int Braz J Urol, 2019, 45(4): 686-694. DOI: 10.1590/S1677-5538.IBJU.2018.0530.
[34]
Engelmann SU, Pickl C, Haas M, et al. Body composition of patients undergoing radical cystectomy for bladder cancer: sarcopenia, low psoas muscle index, and myosteatosis are independent risk factors for mortality[J]. Cancers (Basel), 2023, 15(6): 1778. DOI: 10.3390/cancers15061778.
[35]
Yamashita S, Iguchi T, Koike H, et al. Impact of preoperative sarcopenia and myosteatosis on prognosis after radical cystectomy in patients with bladder cancer[J]. Int J Urol, 2021, 28(7): 757-762. DOI: 10.1111/iju.14569.
[36]
Lee S, Yoon Y, Suh J, et al. Association of preoperative sarcopenia with the long-term prognosis of patients with bladder cancer undergoing radical cystectomy[J]. J Cancer Res Clin Oncol, 2024, 150(4): 173. DOI: 10.1007/s00432-024-05705-6.
[1] 杨丽仙, 黄稚熙, 梁博诚, 欧阳淑媛, 陈明朗, 赵英丽, 马薇波, 缪敬, 王磊, 袁鹰. 基于产前时序超声数据的新生儿出生体重智能预测[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 721-732.
[2] 罗兵, 董凤群, 牛艺臻, 王锟, 程志华, 刘宏强. 胎儿超声心动图在单纯性肺动脉瓣狭窄及预后评估中的价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 740-747.
[3] 孟竹达, 靳亚杰, 郝冉, 赵二鹏. MMIF与围手术期指标预测甲状腺全切术后甲状旁腺功能减退的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 678-681.
[4] 贺雅莉, 黄丽, 杨培娟. 功能保留手术在低位直肠癌治疗中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 701-704.
[5] 杨志, 夏雪峰, 管文贤. DeepSurv深度学习模型辅助胃癌术后精准化疗策略研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 501-505.
[6] 徐其银, 韩尚志. 术前结合术后营养支持对直肠癌患者康复的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 543-546.
[7] 张聪, 李成. 胰头区恶性肿瘤外科手术预后现状及相关因素的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 574-578.
[8] 邓吟咏, 钟洁, 蒋理立, 杨婕. 结直肠肿瘤手术后并发症的预测与预防:基于临床研究的最新进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 579-583.
[9] 陈育纯, 王倩倩, 彭天明, 李勇, 田凯文, 刘志烨, 吴坤林, 蒲小勇, 刘久敏. 基于GEO数据库探究前列腺癌淋巴结转移和内脏转移中基因差异及预后[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 579-585.
[10] 林水荣, 宋子敏, 于玺, 李绍强, 华赟鹏, 沈顺利. 术前抗病毒治疗对HBV相关肝癌肝切除术后肝衰竭影响[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 700-706.
[11] 张燕, 许丁伟, 胡满琴, 黄昊扬, 宋光娜, 黄洁. 术前免疫炎症指标对肝癌肝切除术患者生存预后的预测价值[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 707-715.
[12] 方兴保, 庞国莲, 李月宏, 蔡艳. 基于多组学分析MCAM在肝癌中表达及其与生存预后和免疫细胞浸润的关系[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 716-724.
[13] 赵俊宇, 林航宇, 李会灵, 王显飞, 游川. 肝癌肝切除术后大量腹水预测模型的建立与验证[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 740-747.
[14] 陈佳乐, 余安海, 袁文康, 张超, 张冲. 肝切除术围手术期监测及处理[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 785-788.
[15] 王美琴, 周昱和, 潘海涛, 王砚青, 赵平, 张志花. hs-CRP、NLR、IBI与慢性心力衰竭患者合并营养不良的相关性分析[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 361-366.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?