切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2021, Vol. 15 ›› Issue (01) : 80 -83. doi: 10.3877/cma.j.issn.1674-3253.2021.01.021

所属专题: 文献

综述

前列腺癌多参数磁共振成像影像组学研究进展
贾杰东1, 张彬1, 韩帅红1, 王东文1,()   
  1. 1. 030001 太原,山西医科大学第一医院泌尿外科
  • 收稿日期:2019-10-08 出版日期:2021-02-01
  • 通信作者: 王东文

Advances in radiomics of multiparametric magnetic resonance imaging for prostate cancer

Jiedong Jia1, Bin Zhang1, Shuaihong Han1   

  • Received:2019-10-08 Published:2021-02-01
引用本文:

贾杰东, 张彬, 韩帅红, 王东文. 前列腺癌多参数磁共振成像影像组学研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2021, 15(01): 80-83.

Jiedong Jia, Bin Zhang, Shuaihong Han. Advances in radiomics of multiparametric magnetic resonance imaging for prostate cancer[J/OL]. Chinese Journal of Endourology(Electronic Edition), 2021, 15(01): 80-83.

[1]
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132.
[2]
Lin Y C, Lin G, Hong JH, et al. Diffusion radiomics analysis of intratumoral heterogeneity in a murine prostate cancer model following radiotherapy: Pixelwise correlation with histology[J].J Magn Reson Imaging, 2017, 46(2): 483-489.
[3]
Lee SJ, Oh YT, Jung DC, et al. Combined analysis of biparametric mri and prostate-specific antigen density: role in the prebiopsy diagnosis of gleason score 7 or greater prostate cancer[J]. AJR Am J Roentgenol, 2018, 211(3): W166-W172.
[4]
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446.
[5]
Kumar V, Gu Y, Basu S, et al. Radiomics: the process and the challenges[J]. Magn Reson Imaging, 2012, 30(9): 1234-1248.
[6]
Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[J]. Nat Commun, 2014, 5: 4006.
[7]
Robert J Gillies, Paul E Kinahan, Hedvig Hricak. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-577.
[8]
Dashevsky BZ, Oh JH, Apte AP, et al. MRI features predictive of negative surgical margins in patients with HER2 overexpressing breast cancer undergoing breast conservation[J]. Sci Rep, 2018, 8(1): 315.
[9]
Dong Y, Feng Q, Yang W, et al. Preoperative prediction of sentinel lymph node metastasis in breast cancer based on radiomics of T2-weighted fat-suppression and diffusion-weighted MRI[J]. Eur Radiol, 2018, 28(2): 582-591.
[10]
Sun Y, Hu P, Wang J, et al. Radiomic features of pretreatment mri could identify t stage in patients with rectal cancer: preliminary findings[J]. J Magn Reson Imaging, 2018, 48(3): 615-621.
[11]
Yanqi Huang, Zaiyi Liu, Lan He, et al. Radiomics signature: a potential biomarker for the prediction of disease-free survival in early-stage (i or ii) non-small cell lung cancer[J]. Radiology, 2016, 281(3): 947-957.
[12]
Weinreb JC, Barentsz JO, Choyke PL, et al. PI-RADs prostate imaging - reporting and data system: 2015, version 2[J]. Eur Urol, 2016, 69(1): 16-40.
[13]
Khalvati F, Wong A, Haider MA. Automated prostate cancer detection via comprehensive multi-parametric magnetic resonance imaging texture feature models[J]. BMC Med Imaging, 2015, 15: 27.
[14]
Glaister J, Cameron A, Wong A, et al. Quantitative investigative analysis of tumour separability in the prostate gland using ultra-high b-value computed diffusion imaging[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2012, 2012: 420-423.
[15]
Wong A, Glaister J, Cameron A, et al. Correlated diffusion imaging[J]. BMC medical imaging, 2013, 13: 26.
[16]
Min X, Li M, Dong D, et al. Multi-parametric MRI-based radiomics signature for discriminating between clinically significant and insignificant prostate cancer: Cross-validation of a machine learning method[J]. Eur J Radiol, 2019, 115: 16-21.
[17]
Wang Y, Yu B, Zhong F, et al. MRI-based texture analysis of the primary tumor for pre-treatment prediction of bone metastases in prostate cancer[J]. Magn Reson Imaging, 2019, 60: 76-84.
[18]
Cuocolo R, Stanzione A, Ponsiglione A, et al. Clinically significant prostate cancer detection on MRI: A radiomic shape features study[J]. Eur J Radiol, 2019, 116: 144-149.
[19]
Chen T, Li M, Gu Y, et al. Prostate cancer differentiation and aggressiveness: assessment with a radiomic-based model vs. pi-rads v2[J]. J Magn Reson Imaging, 2019, 49(3): 875-884.
[20]
Shiradkar R, Ghose S, Jambor I, et al. Radiomic features from pretreatment biparametric mri predict prostate cancer biochemical recurrence: preliminary findings[J]. J Magn Reson Imaging, 2018, 48(6): 1626-1636.
[21]
Bi W L, Hosny A, Schabath M B, et al. Artificial intelligence in cancer imaging: Clinical challenges and applications[J]. CA Cancer J Clin, 2019, 69(2): 127-157.
[22]
Klotz L, Vesprini D, Sethukavalan P, et al. Long-term follow-up of a large active surveillance cohort of patients with prostate cancer[J]. J Clin Oncol, 2015, 33(3): 272-277.
[23]
Wolters T, Roobol MJ, Van Leeuwen P J, et al. A critical analysis of the tumor volume threshold for clinically insignificant prostate cancer using a data set of a randomized screening trial[J]. J Urol, 2011, 185(1): 121-125.
[24]
Loeb S, Bjurlin MA, Nicholson J, et al. Overdiagnosis and overtreatment of prostate cancer[J]. Eur Urol, 2014, 65(6): 1046-1055.
[25]
Orczyk C, Villers A, Rusinek H, et al. Prostate cancer heterogeneity: texture analysis score based on multiple magnetic resonance imaging sequences for detection, stratification and selection of lesions at time of biopsy[J]. BJU Int, 2019, 124(1):76-86.
[26]
Fehr D, Veeraraghavan H, Wibmer A, et al. Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images[J]. Proc Natl Acad Sci USA, 2015, 112(46): E6265-73.
[27]
Nketiah G, Elschot M, Kim E, et al. T2-weighted MRI-derived textural features reflect prostate cancer aggressiveness: preliminary results[J]. Eur Radiol, 2017, 27(7): 3050-3059.
[28]
Roethke MC, Lichy MP, Kniess M, et al. Accuracy of preoperative endorectal MRI in predicting extracapsular extension and influence on neurovascular bundle sparing in radical prostatectomy[J]. World J Urol, 2012, 31(5): 1111-1116.
[29]
Mcevoy SH, Raeside MC, Chaim J, et al. Preoperative Prostate MRI: A Road Map for Surgery[J]. AJR Am J Roentgenol, 2018, 211(2): 383-391.
[30]
Ma S, Xie H, Wang H, et al. MRI-based radiomics signature for the preoperative prediction of extracapsular extension of prostate cancer[J]. J Magn Reson Imaging, 2019, 50(6):1914-1925.
[31]
Gnep K, Fargeas A, Gutierrez-Carvajal RE, et al. Haralick textural features on T2 -weighted MRI are associated with biochemical recurrence following radiotherapy for peripheral zone prostate cancer[J]. J Magn Reson Imaging, 2017, 45(1): 103-117.
[32]
Larue RT, Defraene G, De Ruysscher D, et al. Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures[J]. The British journal of radiology, 2017, 90(1070): 20160665.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[3] 杨敬武, 周美君, 陈雨凡, 李素淑, 何燕妮, 崔楠, 刘红梅. 人工智能超声结合品管圈活动对低年资超声医师甲状腺结节风险评估能力的作用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 522-526.
[4] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[5] 叶莉, 杜宇. 深度学习在牙髓根尖周病临床诊疗中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 351-356.
[6] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[7] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[8] 黄俊龙, 李文双, 李晓阳, 刘柏隆, 陈逸龙, 丘惠平, 周祥福. 基于盆底彩超的人工智能模型在女性压力性尿失禁分度诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 597-605.
[9] 祝炜安, 林华慧, 吴建杰, 黄炯煅, 吴婷婷, 赖文杰. RDM1通过CDK4促进前列腺癌细胞进展的研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 618-625.
[10] 王功炜, 李书豪, 魏松, 吕博然, 胡成. 溶瘤病毒M1对不同前列腺癌细胞杀伤效果的研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 626-632.
[11] 施一辉, 张平新, 朱勇, 杨德林. 机器人辅助前列腺根治术后切缘阳性的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 633-637.
[12] 莫淇舟, 苏劲, 黄健, 李健维, 李思宁, 柳建军. 智能控压输尿管软镜碎石吸引取石术在直径10~25 mm上尿路结石中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 497-502.
[13] 陆镜明, 韩大为, 任耀星, 黄天笑, 向俊西, 张谞丰, 吕毅, 王傅民. 基于术前影像组学的肝内胆管细胞癌淋巴结转移预测的系统性分析[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 852-858.
[14] 张龙, 孙善柯, 徐伟, 李文柱, 李俊达, 池涌泉, 何广胜, 成峰, 王学浩, 饶建华. 腹腔镜脾切除治疗血液系统疾病的临床疗效分析[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 870-875.
[15] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
阅读次数
全文


摘要