[1] |
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132.
|
[2] |
Lin Y C, Lin G, Hong JH, et al. Diffusion radiomics analysis of intratumoral heterogeneity in a murine prostate cancer model following radiotherapy: Pixelwise correlation with histology[J].J Magn Reson Imaging, 2017, 46(2): 483-489.
|
[3] |
Lee SJ, Oh YT, Jung DC, et al. Combined analysis of biparametric mri and prostate-specific antigen density: role in the prebiopsy diagnosis of gleason score 7 or greater prostate cancer[J]. AJR Am J Roentgenol, 2018, 211(3): W166-W172.
|
[4] |
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446.
|
[5] |
Kumar V, Gu Y, Basu S, et al. Radiomics: the process and the challenges[J]. Magn Reson Imaging, 2012, 30(9): 1234-1248.
|
[6] |
Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[J]. Nat Commun, 2014, 5: 4006.
|
[7] |
Robert J Gillies, Paul E Kinahan, Hedvig Hricak. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-577.
|
[8] |
Dashevsky BZ, Oh JH, Apte AP, et al. MRI features predictive of negative surgical margins in patients with HER2 overexpressing breast cancer undergoing breast conservation[J]. Sci Rep, 2018, 8(1): 315.
|
[9] |
Dong Y, Feng Q, Yang W, et al. Preoperative prediction of sentinel lymph node metastasis in breast cancer based on radiomics of T2-weighted fat-suppression and diffusion-weighted MRI[J]. Eur Radiol, 2018, 28(2): 582-591.
|
[10] |
Sun Y, Hu P, Wang J, et al. Radiomic features of pretreatment mri could identify t stage in patients with rectal cancer: preliminary findings[J]. J Magn Reson Imaging, 2018, 48(3): 615-621.
|
[11] |
Yanqi Huang, Zaiyi Liu, Lan He, et al. Radiomics signature: a potential biomarker for the prediction of disease-free survival in early-stage (i or ii) non-small cell lung cancer[J]. Radiology, 2016, 281(3): 947-957.
|
[12] |
Weinreb JC, Barentsz JO, Choyke PL, et al. PI-RADs prostate imaging - reporting and data system: 2015, version 2[J]. Eur Urol, 2016, 69(1): 16-40.
|
[13] |
Khalvati F, Wong A, Haider MA. Automated prostate cancer detection via comprehensive multi-parametric magnetic resonance imaging texture feature models[J]. BMC Med Imaging, 2015, 15: 27.
|
[14] |
Glaister J, Cameron A, Wong A, et al. Quantitative investigative analysis of tumour separability in the prostate gland using ultra-high b-value computed diffusion imaging[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2012, 2012: 420-423.
|
[15] |
Wong A, Glaister J, Cameron A, et al. Correlated diffusion imaging[J]. BMC medical imaging, 2013, 13: 26.
|
[16] |
Min X, Li M, Dong D, et al. Multi-parametric MRI-based radiomics signature for discriminating between clinically significant and insignificant prostate cancer: Cross-validation of a machine learning method[J]. Eur J Radiol, 2019, 115: 16-21.
|
[17] |
Wang Y, Yu B, Zhong F, et al. MRI-based texture analysis of the primary tumor for pre-treatment prediction of bone metastases in prostate cancer[J]. Magn Reson Imaging, 2019, 60: 76-84.
|
[18] |
Cuocolo R, Stanzione A, Ponsiglione A, et al. Clinically significant prostate cancer detection on MRI: A radiomic shape features study[J]. Eur J Radiol, 2019, 116: 144-149.
|
[19] |
Chen T, Li M, Gu Y, et al. Prostate cancer differentiation and aggressiveness: assessment with a radiomic-based model vs. pi-rads v2[J]. J Magn Reson Imaging, 2019, 49(3): 875-884.
|
[20] |
Shiradkar R, Ghose S, Jambor I, et al. Radiomic features from pretreatment biparametric mri predict prostate cancer biochemical recurrence: preliminary findings[J]. J Magn Reson Imaging, 2018, 48(6): 1626-1636.
|
[21] |
Bi W L, Hosny A, Schabath M B, et al. Artificial intelligence in cancer imaging: Clinical challenges and applications[J]. CA Cancer J Clin, 2019, 69(2): 127-157.
|
[22] |
Klotz L, Vesprini D, Sethukavalan P, et al. Long-term follow-up of a large active surveillance cohort of patients with prostate cancer[J]. J Clin Oncol, 2015, 33(3): 272-277.
|
[23] |
Wolters T, Roobol MJ, Van Leeuwen P J, et al. A critical analysis of the tumor volume threshold for clinically insignificant prostate cancer using a data set of a randomized screening trial[J]. J Urol, 2011, 185(1): 121-125.
|
[24] |
Loeb S, Bjurlin MA, Nicholson J, et al. Overdiagnosis and overtreatment of prostate cancer[J]. Eur Urol, 2014, 65(6): 1046-1055.
|
[25] |
Orczyk C, Villers A, Rusinek H, et al. Prostate cancer heterogeneity: texture analysis score based on multiple magnetic resonance imaging sequences for detection, stratification and selection of lesions at time of biopsy[J]. BJU Int, 2019, 124(1):76-86.
|
[26] |
Fehr D, Veeraraghavan H, Wibmer A, et al. Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images[J]. Proc Natl Acad Sci USA, 2015, 112(46): E6265-73.
|
[27] |
Nketiah G, Elschot M, Kim E, et al. T2-weighted MRI-derived textural features reflect prostate cancer aggressiveness: preliminary results[J]. Eur Radiol, 2017, 27(7): 3050-3059.
|
[28] |
Roethke MC, Lichy MP, Kniess M, et al. Accuracy of preoperative endorectal MRI in predicting extracapsular extension and influence on neurovascular bundle sparing in radical prostatectomy[J]. World J Urol, 2012, 31(5): 1111-1116.
|
[29] |
Mcevoy SH, Raeside MC, Chaim J, et al. Preoperative Prostate MRI: A Road Map for Surgery[J]. AJR Am J Roentgenol, 2018, 211(2): 383-391.
|
[30] |
Ma S, Xie H, Wang H, et al. MRI-based radiomics signature for the preoperative prediction of extracapsular extension of prostate cancer[J]. J Magn Reson Imaging, 2019, 50(6):1914-1925.
|
[31] |
Gnep K, Fargeas A, Gutierrez-Carvajal RE, et al. Haralick textural features on T2 -weighted MRI are associated with biochemical recurrence following radiotherapy for peripheral zone prostate cancer[J]. J Magn Reson Imaging, 2017, 45(1): 103-117.
|
[32] |
Larue RT, Defraene G, De Ruysscher D, et al. Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures[J]. The British journal of radiology, 2017, 90(1070): 20160665.
|