切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2021, Vol. 15 ›› Issue (01) : 80 -83. doi: 10.3877/cma.j.issn.1674-3253.2021.01.021

所属专题: 文献

综述

前列腺癌多参数磁共振成像影像组学研究进展
贾杰东1, 张彬1, 韩帅红1, 王东文1,()   
  1. 1. 030001 太原,山西医科大学第一医院泌尿外科
  • 收稿日期:2019-10-08 出版日期:2021-02-01
  • 通信作者: 王东文

Advances in radiomics of multiparametric magnetic resonance imaging for prostate cancer

Jiedong Jia1, Bin Zhang1, Shuaihong Han1   

  • Received:2019-10-08 Published:2021-02-01
引用本文:

贾杰东, 张彬, 韩帅红, 王东文. 前列腺癌多参数磁共振成像影像组学研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2021, 15(01): 80-83.

Jiedong Jia, Bin Zhang, Shuaihong Han. Advances in radiomics of multiparametric magnetic resonance imaging for prostate cancer[J]. Chinese Journal of Endourology(Electronic Edition), 2021, 15(01): 80-83.

[1]
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132.
[2]
Lin Y C, Lin G, Hong JH, et al. Diffusion radiomics analysis of intratumoral heterogeneity in a murine prostate cancer model following radiotherapy: Pixelwise correlation with histology[J].J Magn Reson Imaging, 2017, 46(2): 483-489.
[3]
Lee SJ, Oh YT, Jung DC, et al. Combined analysis of biparametric mri and prostate-specific antigen density: role in the prebiopsy diagnosis of gleason score 7 or greater prostate cancer[J]. AJR Am J Roentgenol, 2018, 211(3): W166-W172.
[4]
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446.
[5]
Kumar V, Gu Y, Basu S, et al. Radiomics: the process and the challenges[J]. Magn Reson Imaging, 2012, 30(9): 1234-1248.
[6]
Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[J]. Nat Commun, 2014, 5: 4006.
[7]
Robert J Gillies, Paul E Kinahan, Hedvig Hricak. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-577.
[8]
Dashevsky BZ, Oh JH, Apte AP, et al. MRI features predictive of negative surgical margins in patients with HER2 overexpressing breast cancer undergoing breast conservation[J]. Sci Rep, 2018, 8(1): 315.
[9]
Dong Y, Feng Q, Yang W, et al. Preoperative prediction of sentinel lymph node metastasis in breast cancer based on radiomics of T2-weighted fat-suppression and diffusion-weighted MRI[J]. Eur Radiol, 2018, 28(2): 582-591.
[10]
Sun Y, Hu P, Wang J, et al. Radiomic features of pretreatment mri could identify t stage in patients with rectal cancer: preliminary findings[J]. J Magn Reson Imaging, 2018, 48(3): 615-621.
[11]
Yanqi Huang, Zaiyi Liu, Lan He, et al. Radiomics signature: a potential biomarker for the prediction of disease-free survival in early-stage (i or ii) non-small cell lung cancer[J]. Radiology, 2016, 281(3): 947-957.
[12]
Weinreb JC, Barentsz JO, Choyke PL, et al. PI-RADs prostate imaging - reporting and data system: 2015, version 2[J]. Eur Urol, 2016, 69(1): 16-40.
[13]
Khalvati F, Wong A, Haider MA. Automated prostate cancer detection via comprehensive multi-parametric magnetic resonance imaging texture feature models[J]. BMC Med Imaging, 2015, 15: 27.
[14]
Glaister J, Cameron A, Wong A, et al. Quantitative investigative analysis of tumour separability in the prostate gland using ultra-high b-value computed diffusion imaging[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2012, 2012: 420-423.
[15]
Wong A, Glaister J, Cameron A, et al. Correlated diffusion imaging[J]. BMC medical imaging, 2013, 13: 26.
[16]
Min X, Li M, Dong D, et al. Multi-parametric MRI-based radiomics signature for discriminating between clinically significant and insignificant prostate cancer: Cross-validation of a machine learning method[J]. Eur J Radiol, 2019, 115: 16-21.
[17]
Wang Y, Yu B, Zhong F, et al. MRI-based texture analysis of the primary tumor for pre-treatment prediction of bone metastases in prostate cancer[J]. Magn Reson Imaging, 2019, 60: 76-84.
[18]
Cuocolo R, Stanzione A, Ponsiglione A, et al. Clinically significant prostate cancer detection on MRI: A radiomic shape features study[J]. Eur J Radiol, 2019, 116: 144-149.
[19]
Chen T, Li M, Gu Y, et al. Prostate cancer differentiation and aggressiveness: assessment with a radiomic-based model vs. pi-rads v2[J]. J Magn Reson Imaging, 2019, 49(3): 875-884.
[20]
Shiradkar R, Ghose S, Jambor I, et al. Radiomic features from pretreatment biparametric mri predict prostate cancer biochemical recurrence: preliminary findings[J]. J Magn Reson Imaging, 2018, 48(6): 1626-1636.
[21]
Bi W L, Hosny A, Schabath M B, et al. Artificial intelligence in cancer imaging: Clinical challenges and applications[J]. CA Cancer J Clin, 2019, 69(2): 127-157.
[22]
Klotz L, Vesprini D, Sethukavalan P, et al. Long-term follow-up of a large active surveillance cohort of patients with prostate cancer[J]. J Clin Oncol, 2015, 33(3): 272-277.
[23]
Wolters T, Roobol MJ, Van Leeuwen P J, et al. A critical analysis of the tumor volume threshold for clinically insignificant prostate cancer using a data set of a randomized screening trial[J]. J Urol, 2011, 185(1): 121-125.
[24]
Loeb S, Bjurlin MA, Nicholson J, et al. Overdiagnosis and overtreatment of prostate cancer[J]. Eur Urol, 2014, 65(6): 1046-1055.
[25]
Orczyk C, Villers A, Rusinek H, et al. Prostate cancer heterogeneity: texture analysis score based on multiple magnetic resonance imaging sequences for detection, stratification and selection of lesions at time of biopsy[J]. BJU Int, 2019, 124(1):76-86.
[26]
Fehr D, Veeraraghavan H, Wibmer A, et al. Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images[J]. Proc Natl Acad Sci USA, 2015, 112(46): E6265-73.
[27]
Nketiah G, Elschot M, Kim E, et al. T2-weighted MRI-derived textural features reflect prostate cancer aggressiveness: preliminary results[J]. Eur Radiol, 2017, 27(7): 3050-3059.
[28]
Roethke MC, Lichy MP, Kniess M, et al. Accuracy of preoperative endorectal MRI in predicting extracapsular extension and influence on neurovascular bundle sparing in radical prostatectomy[J]. World J Urol, 2012, 31(5): 1111-1116.
[29]
Mcevoy SH, Raeside MC, Chaim J, et al. Preoperative Prostate MRI: A Road Map for Surgery[J]. AJR Am J Roentgenol, 2018, 211(2): 383-391.
[30]
Ma S, Xie H, Wang H, et al. MRI-based radiomics signature for the preoperative prediction of extracapsular extension of prostate cancer[J]. J Magn Reson Imaging, 2019, 50(6):1914-1925.
[31]
Gnep K, Fargeas A, Gutierrez-Carvajal RE, et al. Haralick textural features on T2 -weighted MRI are associated with biochemical recurrence following radiotherapy for peripheral zone prostate cancer[J]. J Magn Reson Imaging, 2017, 45(1): 103-117.
[32]
Larue RT, Defraene G, De Ruysscher D, et al. Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures[J]. The British journal of radiology, 2017, 90(1070): 20160665.
[1] 张茜, 陈佳慧, 高雪萌, 赵傲雪, 黄瑛. 基于高帧频超声造影的影像组学特征鉴别诊断甲状腺结节良恶性的价值[J]. 中华医学超声杂志(电子版), 2023, 20(09): 895-903.
[2] 张梅芳, 谭莹, 朱巧珍, 温昕, 袁鹰, 秦越, 郭洪波, 侯伶秀, 黄文兰, 彭桂艳, 李胜利. 早孕期胎儿头臀长正中矢状切面超声图像的人工智能质控研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 945-950.
[3] 方晔, 谢晓红, 罗辉. 品管圈在提高前列腺癌穿刺检出率中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(07): 722-727.
[4] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[5] 范帅华, 郭伟, 郭军. 基于机器学习的决策树算法在血流感染预后预测中应用现状及展望[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 289-293.
[6] 李晓阳, 刘柏隆, 周祥福. 大数据及人工智能对女性盆底功能障碍性疾病的诊断及风险预测[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 549-552.
[7] 李全喜, 唐辉军, 张健生, 杨飞. 基于MUSE-DWI与SS-DWI技术在前列腺癌图像中的对比研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 553-557.
[8] 梁健, 何京伟, 关文峰, 梁其炎, 冯能卓, 黄亦欣, 覃文超. 多参数MRI与超声认知融合引导下前列腺靶向穿刺的前瞻性研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 558-562.
[9] 邢晓伟, 刘雨辰, 赵冰, 王明刚. 基于术前腹部CT的卷积神经网络对腹壁切口疝术后复发预测价值[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 677-681.
[10] 吴晨瑞, 廖锐, 贺强, 潘龙, 黄平, 曹洪祥, 赵益, 王永琛, 黄俊杰, 孙睿锐. MDT模式下肝动脉灌注化疗联合免疫靶向治疗肝细胞癌多处转移一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 713-716.
[11] 韩冰, 顾劲扬. 深度学习神经网络在肝癌诊疗中的研究及应用前景[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 480-485.
[12] 何传超, 肖治宇. 晚期肝癌综合治疗模式与策略[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 486-489.
[13] 杨聚荣. 透析患者妊娠的管理[J]. 中华肾病研究电子杂志, 2023, 12(05): 300-300.
[14] 姜里蛟, 张峰, 周玉萍. 多学科诊疗模式救治老年急性非静脉曲张性上消化道大出血患者的临床观察[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 520-524.
[15] 王苏贵, 皇立媛, 姜福金, 吴自余, 张先云, 李强, 严大理. 异质性细胞核核糖蛋白A2B1在前列腺癌中的作用及其靶向中药活性成分筛选研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 731-736.
阅读次数
全文


摘要