切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2023, Vol. 17 ›› Issue (03) : 294 -298. doi: 10.3877/cma.j.issn.1674-3253.2023.03.021

综述

铁死亡的分子机制及其在前列腺癌治疗中的研究进展
邵浩仁1, 郭佳1,()   
  1. 1. 430060 湖北,武汉大学人民医院泌尿外科
  • 收稿日期:2022-02-22 出版日期:2023-06-01
  • 通信作者: 郭佳
  • 基金资助:
    国家自然科学基金青年基金(81702539)

The molecular mechanism of iron death and its research progress in the treatment of prostate cancer

Haoren Shao1, Jia Guo1()   

  • Received:2022-02-22 Published:2023-06-01
  • Corresponding author: Jia Guo
引用本文:

邵浩仁, 郭佳. 铁死亡的分子机制及其在前列腺癌治疗中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 294-298.

Haoren Shao, Jia Guo. The molecular mechanism of iron death and its research progress in the treatment of prostate cancer[J/OL]. Chinese Journal of Endourology(Electronic Edition), 2023, 17(03): 294-298.

前列腺癌(prostate cancer,PCa)是常见的男性恶性肿瘤之一,其发病率位于全球所有男性恶性肿瘤第一位,死亡率位于第二位[1]。近年来我国前列腺癌发病率和死亡率呈现上升趋势[2]。尽管近年来的PCa治疗方式如手术治疗、新型内分泌治疗、化疗和放疗等都有所进展,但患者的预后仍不理想,PCa仍然是一个严重影响男性日常生活的难题[3]。因此,需要进一步研究PCa发生发展机制并探索其潜在的治疗靶点。

[1]
Siegel RL, Miller KD, Fuchs HE, et al. Cancer Statistics, 2021[J]. CA: Cancer J Clin, 2021, 71(1): 7-33.
[2]
方友强, 周祥福. 2020版欧洲泌尿外科学会前列腺癌诊疗指南更新要点解读[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2020, 14(6): 401-404.
[3]
Haffner MC, Zwart W, Roudier MP, et al. Genomic and phenotypic heterogeneity in prostate cancer[J]. Nat Rev Urol, 2021, 18(2): 79-92.
[4]
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072.
[5]
Li J, Cao F, Yin H, et al. Ferroptosis: past, present and future[J]. Cell Death Dis, 2020, 11(2): 88.
[6]
Guerrero-Hue M, García-Caballero C, Palomino-Antolín A, et al. Curcumin reduces renal damage associated with rhabdomyolysis by decreasing ferroptosis‐mediated cell death[J]. FASEB J, 2019, 33(8): 8961-8975.
[7]
莫建涛,杨沛泽,曹瑞奇,等. 基于生物信息学分析构建肝内胆管细胞癌患者铁死亡相关lncRNA预后模型[J/OL]. 中华肝脏外科手术学电子杂志, 2023, 12(2): 185-189.
[8]
Liang C, Zhang X, Yang M, et al. Recent progress in ferroptosis inducers for cancer therapy[J]. Advanced Materials ,2019, 31(51): 1904197.
[9]
Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282.
[10]
Tang D, Chen X, Kang R, et al. Ferroptosis: molecular mechanisms and health implications[J]. Cell Res, 2021, 31(2): 107-125.
[11]
Stockwell BR, Jiang X, Gu W. Emerging mechanisms and disease relevance of ferroptosis[J]. Trends Cell Biol, 2020, 30(6): 478-490.
[12]
Mou Y, Wang J, Wu J, et al. Ferroptosis, a new form of cell death: opportunities and challenges in cancer[J]. J Hematol Oncol, 2019, 12(1): 34.
[13]
Chen X, Kang R, Kroemer G, et al. Broadening horizons: the role of ferroptosis in cancer[J]. Nat Rev Clin Oncol, 2021, 18(5): 280-296.
[14]
Chen X, Yu C, Kang R, et al. Iron Metabolism in Ferroptosis[J]. Front Cell Dev Biol, 2020, 8: 590226.
[15]
Yang W, Huang Z, Wu J, et al. A TAZ-ANGPTL4-NOX2 axis regulates ferroptotic cell death and chemoresistance in epithelial ovarian cancer[J]. Mol Cancer Res, 2020, 18(1): 79-90.
[16]
Zou Y, Li H, Graham ET, et al. Cytochrome P450 oxidoreductase contributes tophospholipid peroxidation in ferroptosis[J]. Nat Cheml Biol, 2020, 16(3): 302-309.
[17]
Feng H, Schorpp K, Jin J, et al. Transferrin receptor is a specific ferroptosis marker[J]. Cell Rep, 2020, 30(10): 3411-3423.
[18]
Zheng J, Conrad M. The metabolic underpinnings of ferroptosis[J]. Cell Metab, 2020, 32(6): 920-937.
[19]
Hassannia B, Vandenabeele P, Vanden Berghe T. Targeting Ferroptosis to Iron Out Cancer[J]. Cancer cell, 2019, 35(6): 830-849.
[20]
Kuang F, Liu J, Tang D, et al. Oxidative damage and antioxidant defense in ferroptosis[J]. Front Cell Dev Biol, 2020, 8: 969-969.
[21]
Lei G, Zhang Y, Koppula P, et al. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression[J]. Cell Res, 2020, 30(2): 146-162.
[22]
Ding Y, Chen X, Liu C, et al. Identification of a small molecule as inducer of ferroptosis and apoptosis through ubiquitination of GPX4 in triple negative breast cancer cells[J]. J Hematol Oncol, 2021, 14(1): 19.
[23]
Yao X, Li W, Fang D, et al. Emerging roles of energy metabolism in ferroptosis regulation of tumor cells[J]. Adv Sci (Weinh), 2021, 8(22): 2100997.
[24]
Shin D, Lee J, You JH, et al. Dihydrolipoamide dehydrogenase regulates cystine deprivation-induced ferroptosis in head and neck cancer[J]. Redox Biol, 2020, 30: 101418.
[25]
Kang R, Kroemer G, Tang D. The tumor suppressor protein p53 and the ferroptosis network[J]. Free Radic Biol Med, 2019, 133: 162-168.
[26]
Hafner A, Bulyk M L, Jambhekar A, et al. The multiple mechanisms that regulate p53 activity and cell fate[J]. Nat Rev Mol Cell Biol, 2019, 20(4): 199-210.
[27]
Doll S, Freitas FP, Shah R, et al. FSP1 is a glutathione-independent ferroptosis suppressor[J]. Nature, 2019, 575(7784): 693-698.
[28]
Wei X, Yi X, Zhu X, et al. Posttranslational Modifications in Ferroptosis[J]. Oxid Med Cell Longev, 2020, 2020: 1-12.
[29]
Moussa M, Papatsoris A, Abou Chakra M, et al. Pharmacotherapeutic strategies for castrate-resistant prostate cancer[J]. Expert Opin Pharmacother, 2020, 21(12): 1431-1448.
[30]
Bordini J, Morisi F, Elia AR, et al. Iron induces cell death and strengthens the efficacy of antiandrogen therapy in prostate cancer models[J]. Clin Cancer Res, 2020, 26(23): 6387-6398.
[31]
Nie Z, Chen M, Gao Y, et al. Regulated cell death in urinary malignancies[J]. Front Cell Dev Biol, 2021, 9: 789004..
[32]
Bader DA, Mcguire SE. Tumour metabolism and its unique properties in prostate adenocarcinoma[J]. Nat Rev Urol, 2020, 17(4): 214-231.
[33]
朱芝静, 姜依凡, 张迪泽, 等. Sorafenib通过诱导铁死亡抑制DU145前列腺癌细胞增殖的分子机制[J]. 现代泌尿外科杂志, 2021, 26(9): 780-784.
[34]
Blomme A, Ford CA, Mui E, et al. 2,4-dienoyl-CoA reductase regulates lipid homeostasis in treatment-resistant prostate cancer[J]. Nat Commun, 2020, 11(1): 2508.
[35]
Nassar ZD, Mah CY, Dehairs J, et al. Human DECR1 is an androgen-repressed survival factor that regulates PUFA oxidation to protect prostate tumor cells from ferroptosis[J]. ELife, 2020, 9: e54166.
[36]
Tousignant KD, Rockstroh A, Poad BLJ, et al. Therapy-induced lipid uptake and remodeling underpin ferroptosis hypersensitivity in prostate cancer[J]. Cancer Metab, 2020, 8(1):11.
[37]
Ghoochani A, Hsu E, Aslan M, et al. Ferroptosis inducers are a novel therapeutic approach for advanced prostate cancer[J]. Cancer Res, 2021, 81(6): 1583-1594.
[38]
Yang Y, Liu T, Hu C, et al. Ferroptosis inducer erastin downregulates androgen receptor and its splice variants in castrationresistant prostate cancer[J]. Oncol Rep, 2021, 45(4): 25.
[39]
Qin Z, Ou S, Xu L, et al. Design and synthesis of isothiocyanate‐containing hybrid androgen receptor (AR) antagonist to downregulate AR and induce ferroptosis in GSH-Deficient prostate cancer cells[J]. Chem Biol Drug Des, 2021, 97(5): 1059-1078.
[40]
Li M, Chen X, Wang X, et al. RSL3 enhances the antitumor effect of cisplatin on prostate cancer cells via causing glycolysis dysfunction[J]. Biochem Pharmacol, 2021, 192: 114741.
[41]
He S, Zhang M, Ye Y, et al. ChaC glutathione specific gamma-glutamylcyclotransferase 1 inhibits cell viability and increases the sensitivity of prostate cancer cells to docetaxel by inducing endoplasmic reticulum stress and ferroptosis[J]. Exp Ther Med, 2021, 22(3): 997.
[1] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[2] 常小伟, 蔡瑜, 赵志勇, 张伟. 高强度聚焦超声消融术联合肝动脉化疗栓塞术治疗原发性肝细胞癌的效果及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 56-59.
[3] 李代勤, 刘佩杰. 动态增强磁共振评估中晚期低位直肠癌同步放化疗后疗效及预后的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 100-103.
[4] 许杰, 李亚俊, 冯义文. SOX新辅助化疗后腹腔镜胃癌D2根治术与常规根治术治疗进展期胃癌的近期随访比较[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 647-650.
[5] 薛庆, 施赛叶, 徐雅文, 盛夏, 张芹芹. 追踪方法学联合失效模式与效应分析在膀胱灌注化疗患者中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 553-559.
[6] 陈伟杰, 何小东. 胆囊癌免疫靶向治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 763-768.
[7] 韩加刚, 王振军. 梗阻性左半结肠癌的治疗策略[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 450-458.
[8] 石阳, 于剑锋, 曹可, 翟志伟, 叶春祥, 王振军, 韩加刚. 可扩张金属支架置入联合新辅助化疗治疗完全梗阻性左半结肠癌围手术期并发症分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 464-471.
[9] 梁轩豪, 李小荣, 李亮, 林昌伟. 肠梗阻支架置入术联合新辅助化疗治疗结直肠癌急性肠梗阻的疗效及其预后的Meta 分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 472-482.
[10] 严虹霞, 王晓娟, 张毅勋. 2 型糖尿病对结直肠癌患者肿瘤标记物、临床病理及预后的影响[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 483-487.
[11] 赵磊, 刘文志, 林峰, 于剑, 孙铭骏, 崔佑刚, 张旭, 衣宇鹏, 于宝胜, 冯宁. 深部热疗在改善结直肠癌术后辅助化疗副反应及生活质量中的作用研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 488-493.
[12] 王国强, 张纲, 唐建坡, 张玉国, 杨永江. LINC00839 调节miR-17-5p/WEE1 轴对结直肠癌细胞增殖、凋亡和迁移的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 491-499.
[13] 史清泉, 苗彬, 王烁, 陶琳, 沈晨. miR-181a-5p 靶向ATG5 抑制雨蛙素诱导的大鼠胰腺腺泡细胞AR42J自噬的机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 524-530.
[14] 张颖, 赵鑫, 陈佳梅, 李雁. 术前化疗对CRS+HIPEC 治疗腹膜假黏液瘤预后影响的meta 分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 826-835.
[15] 蔡晓雯, 李慧景, 丘婕, 杨翼帆, 吴素贤, 林玉彤, 何秋娜. 肝癌患者肝动脉化疗栓塞术后疼痛风险预测模型的构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 722-728.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?