切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2023, Vol. 17 ›› Issue (03) : 299 -302. doi: 10.3877/cma.j.issn.1674-3253.2023.03.022

综述

CT在泌尿系结石诊疗中的应用进展
周子健1, 吴忠1,()   
  1. 1. 200040 上海,复旦大学附属华山医院泌尿外科;200032 复旦大学上海医学院泌尿系结石诊疗研究中心
  • 收稿日期:2022-09-26 出版日期:2023-06-01
  • 通信作者: 吴忠
  • 基金资助:
    国家自然科学基金面上项目(81970603)

Progress in the application of CT in the diagnosis and treatment of urinary tract stones

Zijian Zhou1, Zhong Wu1()   

  • Received:2022-09-26 Published:2023-06-01
  • Corresponding author: Zhong Wu
引用本文:

周子健, 吴忠. CT在泌尿系结石诊疗中的应用进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 299-302.

Zijian Zhou, Zhong Wu. Progress in the application of CT in the diagnosis and treatment of urinary tract stones[J/OL]. Chinese Journal of Endourology(Electronic Edition), 2023, 17(03): 299-302.

泌尿系结石在世界范围内的发病率为1%~20%,在我国的发病率为5%~8%[1]。从整体上看,我国农村地区发病率比城镇地区高,南方地区高于北方地区,其差异可能与种族、气候、饮食习惯及经济发展程度有关[2]。泌尿系结石也是引起尿路感染和腰痛的主要原因,不及时解除梗阻还可能导致肾功能不可逆性损伤[3]。CT是目前泌尿系结石诊疗中最常见、最重要的影像学检查[4]。相比于超声、泌尿系平片(kidney ureter bladder,KUB)或静脉肾盂造影(intravenous pyelogram,IVP),CT分辨率高,并且可以从不同平面和角度直观地反映结石的位置、形态和大小[5]。由于CT在泌尿系结石检查中的高灵敏性和高特异性,CT已经被认为是结石患者初始诊断和后期随访的金标准[6]。近年来,CT还被广泛应用于辅助泌尿系结石的微创治疗[7]。目前泌尿外科已经进入了微创治疗时代,泌尿系结石的微创治疗取得了巨大的进展,主要包括体外冲击波碎石术(extracorporeal shock wave lithotripsy,ESWL)、经皮肾镜碎石取石术(percutaneous nephrolithotomy,PCNL)、输尿管镜碎石取石术(ureteroscopy,URS)及输尿管软镜碎石取石术(flexible ureteroscopy,FURS)等[8]。CT技术的快速发展为泌尿系结石的诊疗过程带来了巨大变革,本文就此进行综述。

[1]
Crivelli JJ, Maalouf NM, Paiste HJ, et al. Disparities in kidney stone disease: a scoping review[J]. J Urol, 2021, 206(3): 517-525.
[2]
Aizezi X, Xie L, Xie H, et al. Epidemiological and clinical characteristics of stone composition: a single-center retrospective study[J]. Urolithiasis, 2022, 50(1): 37-46.
[3]
Li X, Wang LP, Ou LL, et al. Revolution spectral CT for urinary stone with a single/mixed composition in vivo: a large sample analysis[J]. World J Urol, 2021, 39(9): 3631-3642.
[4]
Tasian GE, Pulido JE, Keren R, et al. Use of and regional variation in initial CT imaging for kidney stones[J]. Pediatrics, 2014, 134(5): 909-915.
[5]
Brisbane W, Bailey MR, Sorensen MD. An overview of kidney stone imaging techniques[J]. Nat Rev Urol, 2016, 13(11): 654-662.
[6]
Türk C, Petřík A, Sarica K, et al. EAU Guidelines on Diagnosis and Conservative Management of Urolithiasis[J]. Eur Urol, 2016, 69(3): 468-474.
[7]
胡卫国, 李建兴, 叶章群. 2019年欧洲泌尿外科学会年会泌尿系结石诊治热点和进展[J]. 中华泌尿外科杂志, 2019, 40(4): 251-252.
[8]
Zeng GH, Cai C, Duan XZH, et al. Mini percutaneous nephrolithotomy is a noninferior modality to standard percutaneous nephrolithotomy for the management of 20-40mm renal calculi: a multicenter randomized controlled trial[J]. Eur Urol, 2021, 79(1): 114-121.
[9]
Koo K, Matlaga BR. New Imaging techniques in the management of stone disease[J]. Urol Clin North Am, 2019, 46(2): 257-263.
[10]
余虓, 叶章群. 泌尿系结石诊治:聚焦发展,思考未来 [J]. 中华医学杂志, 2021, 101(38): 3049-3053.
[11]
Fried JG, Morgan MA. Renal Imaging: Core Curriculum 2019[J]. Am J Kidney Dis, 2019, 73(4): 552-565.
[12]
Geraghty RM, Davis NF, Tzelves L, et al. Best Practice in Interventional Management of Urolithiasis: An Update from the European Association of Urology Guidelines Panel for Urolithiasis 2022[J]. Eur Urol Focus, 2023, 9(1): 199-208.
[13]
Yuruk E, Tuken M, Sulejman S, et al. Computerized tomography attenuation values can be used to differentiate hydronephrosis from pyonephrosis[J]. World J Urol, 2017, 35(3): 437-442.
[14]
Borofsky MS, Dauw CA, Cohen A, et al. Integration and utilization of modern technologies in nephrolithiasis research[J]. Nat Rev Urol, 2016, 13(9): 549-557.
[15]
Brendlin AS, Winkelmann MT, Peisen F, et al. Diagnostic performance of a contrast-enhanced ultra-low-dose high-pitch ct protocol with reduced scan range for detection of pulmonary embolisms[J]. Diagnostics (Basel), 2021, 11(7): 1251.
[16]
Vicentini FC, Botelho LAA, Braz JLM, et al. Use of the Uro Dyna-CT in endourology - the new frontier[J]. Int Braz J Urol, 2017, 43(4): 762-765.
[17]
Roberts MJ, Williams J, Khadra S, et al. A prospective, matched comparison of ultra-low and standard-dose computed tomography for assessment of renal colic[J]. BJU Int, 2020, 126 Suppl 1: 27-32.
[18]
付晓华, 张英晨, 丁吉阳, 等. 低剂量CT尿路成像辅助定位行经皮肾镜术的可行性研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2018, 12(2): 102-106.
[19]
Kwon JK, Chang IH, Moon YT, et al. Usefulness of low-dose nonenhanced computed tomography with iterative reconstruction for evaluation of urolithiasis: diagnostic performance and agreement between the urologist and the radiologist[J]. Urology, 2015, 85(3): 531-538.
[20]
Licheng J, Yidong F, Ping W, et al. Unenhanced low-dose versus standard-dose CT localization in patients with upper urinary calculi for minimally invasive percutaneous nephrolithotomy (MPCNL)[J]. Indian J Med Res, 2014, 139(3): 386-392.
[21]
Raskin D, Winkler H, Kleinmann N, et al. Very low-dose computerized tomography for confirmation of urinary stone presence[J]. World J Urol, 2021, 39(1): 233-238.
[22]
汤朝晖, 张建生, 陈洋. 光谱CT虚拟平扫在泌尿系结石CT尿路造影中的应用价值[J/OL].中华腔镜泌尿外科杂志(电子版), 2022, 16(3): 244-247.
[23]
Masarwe I, Savin Z, Rabinowich A, et al. Querying the significance of patient position during computerized tomography on the reliability of pre-percutaneous nephrolithotomy planning[J]. World J Urol, 2022, 40(6): 1553-1560.
[24]
易宏锋, 卢月月, 谢琼. 输尿管结石应用64排容积CT尿路成像的诊断价值[J]. 中华介入放射学电子杂志, 2015, 3(1): 34-36.
[25]
Rudenko V, Serova N, Kapanadze L, et al. Dual-energy computed tomography for stone type assessment: a pilot study of dual-energy computed tomography with five indices[J]. J Endourol, 2020, 34(9): 893-899.
[26]
Revilla-López G, Rodríguez-Rivero AM, Del Valle LJ, et al. Biominerals Formed by DNA and Calcium Oxalate or Hydroxyapatite: A Comparative Study[J]. Langmuir, 2019, 35(36): 11912-11922.
[27]
Marra G, Taroni F, Berrettini A, et al. Pediatric nephrolithiasis: a systematic approach from diagnosis to treatment[J]. J Nephrol, 2019, 32(2): 199-210.
[28]
Bonatti M, Lombardo F, Zamboni GA, et al. Renal stones composition in vivo determination: comparison between 100/Sn140 kV dual-energy CT and 120 kV single-energy CT[J]. Urolithiasis, 2017, 45(3): 255-261.
[29]
Habashy D, Xia R, Ridley W, et al. Impact of dual energy characterization of urinary calculus on management[J]. J Med Imaging Radiat Oncol, 2016, 60(5): 624-631.
[30]
Mcgrath TA, Frank RA, Schieda N, et al. Diagnostic accuracy of dual-energy computed tomography (DECT) to differentiate uric acid from non-uric acid calculi: systematic review and meta-analysis[J]. Eur Radiol, 2020, 30(5): 2791-2801.
[31]
Pourvaziri A, Parakh A, Cao J, et al. Comparison of four dual-energy CT scanner technologies for determining renal stone composition: a phantom approach[J]. Radiology, 2022, 304(3): 580-589.
[32]
谈勤奋, 杨婷婷, 房昆仑, 等. 双源CT多参数比较一水草酸钙结石与混合钙结石的临床价值[J]. 国际泌尿系统杂志, 2021, 41(1): 8-12.
[33]
Keyu G, Shuaishuai L, Raj A, et al. A 3D printing personalized percutaneous puncture guide access plate for percutaneous nephrolithotomy: a pilot study[J]. BMC Urol, 2021, 21(1): 184.
[34]
丘捷文, 李春, 文博, 等. 基于CT的肾结石三维模型在经皮肾镜中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2017, 11(5): 309-314.
[35]
夏天. CT平扫对体外冲击波碎石术结局的预测价值[J]. 国际泌尿系统杂志, 2022, 42(5): 923-926.
[36]
Xun Y, Li J, Geng Y, et al. Single extracorporeal shock-wave lithotripsy for proximal ureter stones: Can CT texture analysis technique help predict the therapeutic effect?[J]. Eur J Radiol, 2018, 107: 84-89.
[37]
Niwa N, Matsumoto K, Miyahara M, et al. Simple and practical nomograms for predicting the stone-free rate after shock wave lithotripsy in patients with a solitary upper ureteral stone[J]. World J Urol, 2017, 35(9): 1455-1461.
[38]
赵德威, 倪立董, 王大亚, 等. 输尿管软镜治疗输尿管上段不同CT值结石的临床分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2020, 14(5): 356-359.
[39]
赵书晓, 李峰, 覃智标, 等. 泌尿系CT定量分析对输尿管结石嵌顿的预测价值[J/OL]. 中华腔镜泌尿外科杂志(电子版)2021, 15(2): 126-129.
[40]
Gok A, Polat H, Cift A, et al. The hounsfield unit value calculated with the aid of non-contrast computed tomography and its effect on the outcome of percutaneous nephrolithotomy[J]. Urolithiasis, 2015, 43(3): 277-281.
[1] 冯旺, 马振中, 汤林花. CT扫描三维重建在肝内胆管细胞癌腹腔镜肝切除术中的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 104-107.
[2] 王兴, 文阳辉, 姚戈冰, 郭平学, 杨自华. ICG荧光腹腔镜下胆囊切除术的临床应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 663-666.
[3] 姜宁宁, 蔺艳丽, 陈惠明. 胆总管结石患者腹腔镜胆总管探查术中应用“三针法”缝合方案的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 531-534.
[4] 石兵, 张智, 陈金海, 唐文. 基于电磁跟踪和手术导航系统的实时超声引导下两种经皮肾盏穿刺方法的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 572-578.
[5] 吴春风, 卢国汉, 姚汝贺, 李健辉, 陈文杰, 黄宇. 21 F膀胱镜鞘联合8.0/9.8 F输尿管镜与等离子电切镜在膀胱结石钬激光碎石术中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 579-584.
[6] 王铭池, 梁乐琦, 刘永达. 基于NHANES数据库分析血脂与肾结石之间的关系[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 485-490.
[7] 杜贵伟, 陆勇, 成博, 贺薏, 梁爽. 钬激光碎石术术后联合坦索罗辛治疗对输尿管结石患者的影响分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 491-496.
[8] 莫淇舟, 苏劲, 黄健, 李健维, 李思宁, 柳建军. 智能控压输尿管软镜碎石吸引取石术在直径10~25 mm上尿路结石中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 497-502.
[9] 方道成, 唐春华, 胡媛媛. 肠道菌群对草酸钙肾结石形成的影响[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 509-513.
[10] 苏博兴, 肖博, 李建兴. 2024年美国泌尿外科学会年会结石领域手术治疗相关热点研究及解读[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 303-308.
[11] 张斌, 孙代宇, 胡昕, 韩菲, 李久明, 李功雨, 吴伟力, 冯宝富, 彭国辉. 评分系统预测不同经验手术者输尿管软镜术后结石清除率准确性的比较研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 353-360.
[12] 王亚岚, 倪婧, 余世庆, 陶银花, 张荣. 尼达尼布抗纤维化治疗特发性肺纤维化的耐受性和疗效预测因素分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 750-755.
[13] 王庆亮, 党兮, 师凯, 刘波. 腹腔镜联合胆道子镜经胆囊管胆总管探查取石术[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(02): 313-313.
[14] 王秋生. 胆道良性疾病诊疗策略[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 779-782.
[15] 倪颖, 张铁龙, 王岗, 高玉龙, 陈韶鹏, 倪家璇. 未预置支架逆行输尿管镜治疗近端输尿管结石手术中的困难与应对[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 795-801.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?