[1] |
Hill AJ, Basourakos SP, Lewicki P, et al. Incidence of kidney stones in the united states: the continuous national health and nutrition examination survey[J]. J Urol, 2022, 207(4): 851-856.
|
[2] |
王友铭,许长宝,王晓甫,等. 河南省泌尿系结石住院患者流行病学特点及分析[J]. 临床泌尿外科杂志, 2021, 36(6): 458-463.
|
[3] |
Ferraro PM, Bargagli M. Dietetic and lifestyle recommendations for stone formers[J]. Arch Esp Urol, 2021, 74(1): 112-122.
|
[4] |
Howles SA, Thakker RV. Genetics of kidney stone disease[J]. Nat Rev Urol, 2020,17(7): 407-421.
|
[5] |
Ferraro PM, Bargagli M, Trinchieri A, et al. Risk of kidney stones: influence of dietary factors, dietary patterns, and vegetarian-vegan diets[J]. Nutrients, 2020, 12(3): 779.
|
[6] |
方道成,谷江. 维生素D、高钙尿和肾结石的关系探讨[J]. 现代临床医学, 2019, 45(6): 466-469.
|
[7] |
Skolarikos A, Straub M, Knoll T, et al. Metabolic evaluation and recurrence prevention for urinary stone patients: EAU guidelines[J]. Eur Urol, 2015, 67(4): 750-763.
|
[8] |
Letavernier E, Daudon M. Vitamin D, hypercalciuria and kidney stones[J]. Nutrients, 2018, 10(3): 366.
|
[9] |
Ferraro PM, Taylor EN, Gambaro G, et al. Vitamin D intake and the risk of incident kidney stones[J]. J Urol, 2017, 197(2): 405-410.
|
[10] |
Hart NH, Newton RU, Tan J, et al. Biological basis of bone strength: anatomy, physiology and measurement[J]. J Musculoskelet Neuronal Interact, 2020, 20(3): 347-371.
|
[11] |
Christakos S, Dhawan P, Verstuyf A, et al. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects[J]. Physiol Rev, 2016, 96(1): 365-408.
|
[12] |
De Paolis E, Scaglione GL, De Bonis M, et al. CYP24A1 and SLC34A1 genetic defects associated with idiopathic infantile hypercalcemia: from genotype to phenotype[J]. Clin Chem Lab Med, 2019, 57(11): 1650-1667.
|
[13] |
Shavit L, Chen L, Ahmed F, et al. Selective screening for distal renal tubular acidosis in recurrent kidney stone formers: initial experience and comparison of the simultaneous furosemide and fludrocortisone test with the short ammonium chloride test[J]. Nephrol Dial Transplant, 2016, 31(11): 1870-1876.
|
[14] |
Gambaro G, Croppi E, Coe F, et al. Metabolic diagnosis and medical prevention of calcium nephrolithiasis and its systemic manifestations: a consensus statement[J]. J Nephrol, 2016, 29(6): 715-734.
|
[15] |
Bargagli M, Dhayat N A, Anderegg M, et al. Urinary lithogenic risk profile in ADPKD patients treated with tolvaptan[J]. Clin J Am Soc Nephrol, 2020, 15(7): 1007-1014.
|
[16] |
Downie ML, Alexander RT. Molecular mechanisms altering tubular calcium reabsorption[J]. Pediatr Nephrol, 2021, 37(4): 707-718.
|
[17] |
Martinez GM, Trincado AP, Perez FL, et al. A comparison of induced effects on urinary calcium by thiazides and different dietary salt doses: implications in clinical practice[J]. Nefrologia (Engl Ed), 2019, 39(1): 73-79.
|
[18] |
Edwards NA, Hodgkinson A. Metabolic studies in patients with idiopathic hypercalciuria[J]. Clin Sci, 1965, 29(1): 143-157.
|
[19] |
Bargagli M, Arena M, Naticchia A, et al. The role of diet in bone and mineral metabolism and secondary hyperparathyroidism[J]. Nutrients, 2021,13(7): 13(7):2328..
|
[20] |
Fleet JC. The role of vitamin D in the endocrinology controlling calcium homeostasis[J]. Mol Cell Endocrinol, 2017,453:36-45.
|
[21] |
Tan R, Lee C, Dimke H, et al. The role of calcium-sensing receptor signaling in regulating transepithelial calcium transport[J]. Exp Biol Med (Maywood), 2021, 246(22): 2407-2419.
|
[22] |
Zerwekh JE, Reed BY, Heller HJ, et al. Normal vitamin D receptor concentration and responsiveness to 1, 25-dihydroxyvitamin D3 in skin fibroblasts from patients with absorptive hypercalciuria[J]. Miner Electrolyte Metab, 1998, 24(5): 307-313.
|
[23] |
Miao D, Goltzman D. Probing the scope and mechanisms of calcitriol actions using genetically modified mouse models[J]. JBMR Plus, 2021, 5(1): e10434.
|
[24] |
Imani D, Razi B, Khosrojerdi A, et al. Vitamin D receptor gene polymorphisms and susceptibility to urolithiasis: a meta-regression and meta-analysis[J]. BMC Nephrol, 2020, 21(1): 263.
|
[25] |
李心,李康健,申吉弘,等. 维生素D受体基因单核苷酸多态性位点FokⅠ和ApaⅠ与特发性低枸橼酸尿症的关系[J]. 中华实验外科杂志, 2019, 36(7): 1204-1207.
|
[26] |
Hu H, Zhang J, Lu Y, et al. Association between circulating vitamin d level and urolithiasis: a systematic review and meta-analysis[J]. Nutrients, 2017, 9(3): 301.
|
[27] |
Kim WT, Kim YJ, Yun SJ, et al. Role of 1, 25-dihydroxy vitamin D3 and parathyroid hormone in urinary calcium excretion in calcium stone formers[J]. Yonsei Med J, 2014, 55(5): 1326-1332.
|
[28] |
Taylor EN, Hoofnagle AN, Curhan GC. Calcium and phosphorus regulatory hormones and risk of incident symptomatic kidney stones[J]. Clin J Am Soc Nephrol, 2015, 10(4): 667-675.
|
[29] |
Mateo RCI, Ortiz R, Rosen HN. Bisphosphonates for the treatment of calcitriol-induced hypercalcemia[J]. AACE Clin Case Rep, 2019, 5(5): e316-e320.
|
[30] |
Meyer MB, Pike JW. Mechanistic homeostasis of vitamin D metabolism in the kidney through reciprocal modulation of Cyp27b1 and Cyp24a1 expression[J]. J Steroid Biochem Mol Biol, 2020, 196: 105500.
|
[31] |
Melo TL, Esper P, Zambrano LI, et al. Expression of vitamin D receptor, CYP27B1 and CYP24A1 hydroxylases and 1,25-dihydroxyvitamin D3 levels in stone formers[J]. Urolithiasis, 2020, 48(1): 19-26.
|
[32] |
Molin A, Baudoin R, Kaufmann M, et al. CYP24A1 mutations in a cohort of hypercalcemic patients: evidence for a recessive trait[J]. J Clin Endocrinol Metab, 2015, 100(10): E1343-E1352.
|
[33] |
Kang SJ, Lee R, Kim HS. Infantile hypercalcemia with novel compound heterozygous mutation in SLC34A1 encoding renal sodium-phosphate cotransporter 2a: a case report[J]. Ann Pediatr Endocrinol Metab, 2019, 24(1): 64-67.
|
[34] |
Cormick G, Belizan JM. Calcium intake and health[J]. Nutrients, 2019, 11(7): 1606.
|
[35] |
Coe FL, Favus MJ, Crockett T, et al. Effects of low-calcium diet on urine calcium excretion, parathyroid function and serum 1,25(OH)2D3 levels in patients with idiopathic hypercalciuria and in normal subjects[J]. Am J Med, 1982, 72(1): 25-32.
|
[36] |
柯卓丽,孙丹丹,陈雪莲. 泌尿系结石患者饮食营养认知的调查分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2020, 14(3): 208-211.
|
[37] |
Saponaro F, Marcocci C, Apicella M, et al. Hypomagnesuria is associated with nephrolithiasis in patients with asymptomatic primary hyperparathyroidism[J]. J Clin Endocrinol Metab, 2020, 105(8): dgaa233.
|
[38] |
Curhan GC, Willett WC, Rimm EB, et al. A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones[J]. N Engl J Med, 1993, 328(12): 833-838.
|
[39] |
Curhan GC, Willett WC, Speizer FE, et al. Comparison of dietary calcium with supplemental calcium and other nutrients as factors affecting the risk for kidney stones in women[J]. Ann Intern Med, 1997, 126(7): 497-504.
|
[40] |
Domrongkitchaiporn S, Sopassathit W, Stitchantrakul W, et al. Schedule of taking calcium supplement and the risk of nephrolithiasis[J]. Kidney Int, 2004, 65(5): 1835-1841.
|
[41] |
Prentice RL, Pettinger MB, Jackson RD, et al. Health risks and benefits from calcium and vitamin D supplementation: women's health initiative clinical trial and cohort study[J]. Osteoporos Int, 2013, 24(2): 567-580.
|
[42] |
Malihi Z, Wu Z, Stewart AW, et al. Hypercalcemia, hypercalciuria, and kidney stones in long-term studies of vitamin D supplementation: a systematic review and meta-analysis[J]. Am J Clin Nutr, 2016, 104(4): 1039-1051.
|
[43] |
Lappe J, Watson P, Travers-Gustafson D, et al. Effect of Vitamin D and calcium supplementation on cancer incidence in older women: a randomized clinical trial[J]. JAMA, 2017, 317(12): 1234-1243.
|
[44] |
Johri N, Jaeger P, Ferraro PM, et al. Vitamin D deficiency is prevalent among idiopathic stone formers, but does correction pose any risk?[J]. Urolithiasis, 2017, 45(6): 535-543.
|
[45] |
Malihi Z, Lawes C, Wu Z, et al. Monthly high-dose vitamin D supplementation does not increase kidney stone risk or serum calcium: results from a randomized controlled trial[J]. Am J Clin Nutr, 2019, 109(6): 1578-1587.
|