切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2024, Vol. 18 ›› Issue (01) : 6 -11. doi: 10.3877/cma.j.issn.1674-3253.2024.01.002

专家论坛

前列腺癌特异性近红外荧光探针的研究进展与展望
张琳, 吴波, 王东文()   
  1. 030000 太原,山西医科大学第一临床医学院
    山西医科大学第一医院泌尿外科
    030000 太原,山西医科大学第一临床医学院;518116 深圳,国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院北京协和医学院肿瘤医院深圳医院泌尿外科
  • 收稿日期:2023-11-07 出版日期:2024-02-01
  • 通信作者: 王东文
  • 基金资助:
    山西省基础研究计划(20210302123242); 山西省研究生教育创新项目(2023SJ142); 国家癌症中心重点课题(SZ2020ZD003); 北京白求恩·泌尿肿瘤专项研究基金(mnzl202029)

Research progress and prospects of prostate cancer-specific near-infrared fluorescent probes

Lin Zhang, Bo Wu, Dongwen Wang()   

  • Received:2023-11-07 Published:2024-02-01
  • Corresponding author: Dongwen Wang
引用本文:

张琳, 吴波, 王东文. 前列腺癌特异性近红外荧光探针的研究进展与展望[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 6-11.

Lin Zhang, Bo Wu, Dongwen Wang. Research progress and prospects of prostate cancer-specific near-infrared fluorescent probes[J]. Chinese Journal of Endourology(Electronic Edition), 2024, 18(01): 6-11.

近年来,世界范围内的肿瘤发病率和死亡率有所增高,在我国,肿瘤已经成为致死的重要原因之一[1,2]。其中,前列腺癌(prostate cancer,PCa)是男性泌尿系统发病率最高的恶性肿瘤[3,4]。在美国,PCa是发病率最高的癌症,死亡率仅次于肺癌[3]。其他国家PCa的发病率亦居高不下。因此,PCa是威胁中国乃至全球男性健康的一项不容忽视的疾病。

表1 前列腺特异性膜抗原(PSMA)相关特异性近红外荧光探针
成像荧光基团(分子量) 成像波长 化合物名称 受体亲和力(竞争者) 亲油性 注射剂量
Cy7(665g/mol) λex=753 nm
λem=775 nm
Cy7−1 ki=1.0±0.5 pM(NAAG) LogP=3.39 1 nmol
Cy7−2 ki=7.0±0.4 pM(NAAG) LogP=2.19 1 nmol
Cy7−3 ki=5.0±0.2 pM(NAAG) LogP=3.18 1 nmol
IRDye800CW(983 g/mol) λ ex=774 nm
λem=789 nm
IRDye800CW-1 ki=70±5 pM(NAAG) LogP=2.45 1 nmol
IRDye800CW-2 ki=40±10 pM(NAAG) LogP=1.25 1 nmol
IRDye800CW-3 ki=20±5 pM(NAAG) LogP=3.21 1 nmol
IRDye800RS(825 g/mol) λ ex=774 nm
λem=789 nm
IRDye800RS-1 ki=100±10 pM(NAAG) LogP=5.01 1 nmol
IRDye800RS-2 ki=200±50 pM(NAAG) LogP=3.81 1 nmol
IRDye800RS-3 ki=4±0.5 pM(NAAG) LogP=5.76 1 nmol
ICG(714 g/mol) λ ex=780 nm
λem=800 nm
ICG-1 ki=700±10 pM(NAAG) LogP=5.65 1 nmol
ICG-2 ki=400±60 pM(NAAG) LogP=4.45 1 nmol
ICG-3 ki=200±5 pM(NAAG) LogP=6.40 1 nmol
IRDye800CW(983 g/mol) λ ex=774 nm
λem=789 nm
IRDye800CW-SCE - LogP=0.94 10 nmol
DUPA-IR-Dye800CW kD=12 nM(2-PMPA) LogP=0.62 10 nmol
ZJ-MCC-dEdE-dEGK(IR-Dye800CW)G - LogP=−2.67 2~10 nmol
EUKL-cRGDfK-IRDye800 - LogP=−2.21 1 nmol
PSMA-1-IRDye800 IC50=1.5±0.1 nM(EuC) LogP=−2.14±0.17 1 nmol
ZW800−1(997g/mol) λ ex=772 nm
λem=788 nm
KUE-PEG4-ZW800+3C - LogP=1.39 10 nmol
S0456(983 g/mol) λ ex=774 nm
λem=789 nm
OTL78 kD=4.7 nM(EuK-FITC) LogP=1.19 1,3,10,30,60,90 nmol
成像荧光基团(分子量) 肿瘤摄取(时间点,细胞系) 肾脏摄取(时间点、细胞系) 清除途径(时间、摄取、清除器官)
Cy7(665g/mol) 30 AU(24 h,PC3-PIP) 20AU(24 h,PC3-PIP) 肾脏(24 h,肾脏20 AU,肝脏10 AU)
200 AU(24 h,PC3-PIP) 28AU(24 h,PC3-PIP) 肾脏(24 h,肾脏28 AU,肝脏10 AU)
200 AU(24 h,PC3-PIP) 30AU(24 h,PC3-PIP) 肾脏(24 h,肾脏30 AU,肝脏10 AU)
IRDye800CW(983 g/mol) 500 AU(24 h,PC3-PIP) 3 000 AU(24 h,PC3-PIP) 肾脏(24 h,肾脏3 000 AU,肝脏28 AU)
2 200 AU(24 h,PC3-PIP) 4 000 AU(24 h,PC3-PIP) 肾脏(24 h,肾脏4 000 AU,肝脏13 AU)
3 200 AU(24 h,PC3-PIP) 1 100 AU(24 h,PC3-PIP) 肾脏(24 h,肾脏1 100 AU,肝脏20 AU)
IRDye800RS(825 g/mol) 0.05 AU(24 h,PC3-PIP) 0.10 AU(24 h,PC3-PIP) 肾脏(24 h,肾脏0.10 AU,肝脏0.03 AU)
0.20 AU(24 h,PC3-PIP) 0.25 AU(24 h,PC3-PIP) 肾脏(24 h,肾脏0.25 AU,肝脏0.03 AU)
0.29 AU(24 h,PC3-PIP) 0.29 AU(24 h,PC3-PIP) 肾脏(24 h,肾脏0.29 AU,肝脏0.01 AU)
ICG(714 g/mol) 0.05 AU(24 h,PC3-PIP) 0.05 AU(24 h,PC3-PIP) 肾脏(24 h,肾脏0.05 AU,肝脏0.03 AU)
0.08 AU(24 h,PC3-PIP) 0.10 AU(24 h,PC3-PIP) 肾脏(24 h,肾脏0.10 AU,肝脏0.05 AU)
0.29 AU(24 h,PC3-PIP) 0.22 AU(24 h,PC3-PIP) 肾脏(24 h,肾脏0.22 AU,肝脏0.05 AU)
IRDye800CW(983 g/mol) 160 AU,140 AU(12 h,24 h,LNCaP) - -
- - -
- - -
1.53 AU(24 h,PC3-PIP) 1.53 AU(24 h, PC3-PIP) 肾脏(24 h,肾脏1.53 AU,肝脏0.5 AU)
7.12%ID(120=h,PC3-PIP)28,35,52,58,71,65,60,50,38,31,35,22,(分别在0.8,0.17,0.5,1,2,6,8,24,48,72,96和120 h(体内) 0.004 AU(120 h,PC3-PIP) 肾脏(120 h,肾脏0.004 AU,肝脏0.002 AU)
ZW800−1(997g/mol) 4 AU(4 h,LNCaP) 13 AU(4h,LNCaP) 肾脏(4 h,肾脏13个AU,肝脏2.4个AU)
S0456(983 g/mol) 7.5 AU,15 AU,17.5 AU,11 AU,15 AU,15 AU(2 h,22Rv1细胞,1,3,10,30,60,90 nmol) 1.3 AU,1.8 AU,4.1 AU,5.9 AU,4.2 AU,1.0 AU(2 h,22Rv1胞,1,3,10,30,60,90 nmol) 肾(2 h,肾脏4.1 AU,肝0AU,10 nmol)
[1]
Liu J, Dong L, Zhu Y, et al. Prostate cancer treatment - China's perspective [J]. Cancer Lett, 2022, 550: 215927.
[2]
Qiu H, Cao S, Xu R. Cancer incidence, mortality, and burden in China: a time-trend analysis and comparison with the United States and United Kingdom based on the global epidemiological data released in 2020 [J]. Cancer Commun (Lond), 2021, 41(10): 1037-1048.
[3]
Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022 [J]. CA Cancer J Clin, 2022, 72(1): 7-33.
[4]
Xia C, Dong X, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants [J]. Chin Med J (Engl), 2022, 135(5): 584-590.
[5]
Sekhoacha M, Riet K, Motloung P, et al. Prostate cancer review: genetics, diagnosis, treatment options, and alternative approaches [J]. Molecules, 2022, 27(17): 5730.
[6]
Geczi T, Simonka Z, Lantos J, et al. Near-infrared fluorescence guided surgery: state of the evidence from a health technology assessment perspective [J]. Front Surg, 2022, 9: 919739.
[7]
He K, Li P, Zhang Z, et al. Intraoperative near-infrared fluorescence imaging can identify pelvic nerves in patients with cervical cancer in real time during radical hysterectomy [J]. Eur J Nucl Med Mol Imaging, 2022, 49(8): 2929-2937.
[8]
He K, Hong X, Chi C, et al. Efficacy of near-infrared fluorescence-guided hepatectomy for the detection of colorectal liver metastases: a randomized controlled trial [J]. J Am Coll Surg, 2022, 234(2): 130-137.
[9]
Krishnan G, van den Berg NS, Nishio N, et al. Fluorescent molecular imaging can improve intraoperative sentinel margin detection in oral squamous cell carcinoma [J]. J Nucl Med, 2022, 63(8): 1162-1168.
[10]
Zhang NN, Lu CY, Chen MJ, et al. Recent advances in near-infrared II imaging technology for biological detection [J]. J Nanobiotechnology, 2021, 19(1): 132.
[11]
Meng X, Pang X, Zhang K, et al. Recent advances in near-infrared-II fluorescence imaging for deep-tissue molecular analysis and cancer diagnosis [J]. Small, 2022, 18(31): e2202035.
[12]
Shinn J, Lee S, Lee HK, et al. Recent progress in development and applications of second near-infrared (NIR-II) nanoprobes [J]. Arch Pharm Res, 2021, 44(2): 165-181.
[13]
Zhu S, Tian R, Antaris AL, et al. Near-infrared-II molecular dyes for cancer imaging and surgery [J]. Adv Mater, 2019, 31(24): e1900321.
[14]
Su Y, Yu B, Wang S, et al. NIR-II bioimaging of small organic molecule [J]. Biomaterials, 2021, 271: 120717.
[15]
Shi X, Zhang Z, Zhang Z, et al. Near-infrared window II fluorescence image-guided surgery of high-grade gliomas prolongs the progression-free survival of Patients [J]. IEEE Trans Biomed Eng, 2022, 69(6): 1889-1900.
[16]
Hu Z, Fang C, Li B, et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows [J]. Nat Biomed Eng, 2020, 4(3): 259-271.
[17]
Becker F, Offermann A, Roesch MC, et al. Up-regulation of POM121 is linked to prostate cancer aggressiveness and serves as a prognostic biomarker [J]. Urol Oncol, 2022, 40(8): 380 e11- e18.
[18]
Becker F, Joerg V, Hupe MC, et al. Increased mediator complex subunit CDK19 expression associates with aggressive prostate cancer [J]. Int J Cancer, 2020, 146(2): 577-588.
[19]
Chistiakov DA, Myasoedova VA, Grechko AV, et al. New biomarkers for diagnosis and prognosis of localized prostate cancer [J]. Semin Cancer Biol, 2018, 52(Pt 1): 9-16.
[20]
van der Toom EE, Axelrod HD, de la Rosette JJ, et al. Prostate-specific markers to identify rare prostate cancer cells in liquid biopsies [J]. Nat Rev Urol, 2019, 16(1): 7-22.
[21]
Dorff TB, FantI S, Farolfi A, et al. The evolving role of prostate-specific membrane antigen-based diagnostics and therapeutics in prostate cancer [J]. Am Soc Clin Oncol Educ Book, 2019, 39: 321-330.
[22]
Wang F, Li Z, Feng X, et al. Advances in PSMA-targeted therapy for prostate cancer [J]. Prostate Cancer Prostatic Dis, 2022, 25(1): 11-26.
[23]
van de WielE C, Sathekge M, de Spiegeleer B, et al. PSMA expression on neovasculature of solid tumors [J]. Histol Histopathol, 2020, 35(9): 919-27.
[24]
Kwon H, Lim H, Ha H, et al. Structure-activity relationship studies of prostate-specific membrane antigen (PSMA) inhibitors derived from alpha-amino acid with (S)- or (R)-configuration at P1' region [J]. Bioorg Chem, 2020, 104: 104304.
[25]
Tykvart J, Schimer J, Barinkova J, et al. Rational design of urea-based glutamate carboxypeptidase II (GCPII) inhibitors as versatile tools for specific drug targeting and delivery [J]. Bioorg Med Chem, 2014, 22(15): 4099-4108.
[26]
Davis MI, Bennett MJ, Thomas LM, et al. Crystal structure of prostate-specific membrane antigen, a tumor marker and peptidase [J]. Proc Natl Acad Sci U S A, 2005, 102(17): 5981-5986.
[27]
Barinka C, Rovenska M, Mlcochova P, et al. Structural insight into the pharmacophore pocket of human glutamate carboxypeptidase II [J]. J Med Chem, 2007, 50(14): 3267-73.
[28]
Liu T, Liu C, Zhang Z, et al. 64Cu-PSMA-BCH: a new radiotracer for delayed PET imaging of prostate cancer [J]. Eur J Nucl Med Mol Imaging, 2021, 48(13): 4508-4516.
[29]
Lundmark F, Olanders G, Rinne SS, et al. Design, synthesis, and evaluation of linker-optimised PSMA-targeting radioligands [J]. Pharmaceutics, 2022, 14(5): 1098.
[30]
Plichta KA, Graves SA, Buatti JM. Prostate-specific membrane antigen (PSMA) theranostics for treatment of oligometastatic prostate cancer [J]. Int J Mol Sci, 2021, 22(22): 12095.
[31]
Sindhwani S, Syed AM, Ngai J, et al. The entry of nanoparticles into solid tumours [J]. Nat Mater, 2020, 19(5): 566-575.
[32]
O'connor JP, Aboagye EO, Adams JE, et al. Imaging biomarker roadmap for cancer studies [J]. Nat Rev Clin Oncol, 2017, 14(3): 169-186.
[33]
Zhang RR, Schroeder AB, Grudzinski JJ, et al. Beyond the margins: real-time detection of cancer using targeted fluorophores [J]. Nat Rev Clin Oncol, 2017, 14(6): 347-364.
[34]
Hiyama E. Fluorescence image-guided navigation surgery using indocyanine green for hepatoblastoma [J]. Children (Basel), 2021, 8(11): 1015.
[35]
Ito R, Kamiya M, Urano Y. Molecular probes for fluorescence image-guided cancer surgery [J]. Curr Opin Chem Biol, 2022, 67:102112.
[36]
Paraboschi I, Mantica G, Minoli DG, et al. Fluorescence-guided surgery and novel innovative technologies for improved visualization in pediatric urology [J]. Int J Environ Res Public Health, 2022, 19(18): 11194.
[37]
Manny TB, Patel M, Hemal AK. Fluorescence-enhanced robotic radical prostatectomy using real-time lymphangiography and tissue marking with percutaneous injection of unconjugated indocyanine green: the initial clinical experience in 50 patients [J]. Eur Urol, 2014, 65(6): 1162-1168.
[38]
Sucher R, Brunotte M, Seehofer D. Indocyanine green fluorescence staining in liver surgery[J]. Chirurg, 2020, 91(6): 466-473.
[39]
Muraleedharan S, Tripathy K. Indocyanine green (ICG) angiography [M]. StatPearls. Treasure Island (FL). 2022.
[40]
Egloff-juras C, Bezdetnaya L, Dolivet G, et al. NIR fluorescence-guided tumor surgery: new strategies for the use of indocyanine green [J]. Int J Nanomedicine, 2019, 14: 7823-7838.
[41]
Uijen MJM, Derks YHW, Merkx RIJ, et al. PSMA radioligand therapy for solid tumors other than prostate cancer: background, opportunities, challenges, and first clinical reports [J]. Eur J Nucl Med Mol Imaging, 2021, 48(13): 4350-4368.
[1] 李辉, 尉维录, 吴茂林. 经直肠剪切波弹性成像对存在下尿路症状的前列腺病变良恶性的鉴别诊断价值及其影响因素分析[J]. 中华医学超声杂志(电子版), 2023, 20(11): 1193-1198.
[2] 方晔, 谢晓红, 罗辉. 品管圈在提高前列腺癌穿刺检出率中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(07): 722-727.
[3] 曹建辉, 徐栋, 冯斌, 郑俊彪, 黄伟伟. 超声造影在不同前列腺特异抗原含量前列腺癌穿刺活检中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(03): 307-312.
[4] 闫甲, 刘双池, 王政宇. 胆囊癌肿瘤标志物的研究和应用进展[J]. 中华普通外科学文献(电子版), 2023, 17(05): 391-394.
[5] 李全喜, 唐辉军, 张健生, 杨飞. 基于MUSE-DWI与SS-DWI技术在前列腺癌图像中的对比研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 553-557.
[6] 梅津熠, 王燕, 瞿旻, 董振阳, 周增辉, 沈显琦, 李嘉伦, 高旭. 机器人前列腺癌根治术中"膀胱外中叶"的处理[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 429-433.
[7] 穆靖军, 马增妮, 曹晓明. 临床局限性前列腺癌包膜外侵犯的危险因素分析[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 326-331.
[8] 李全喜, 唐辉军, 唐友杰, 杨飞. DISCO成像技术在前列腺增生与前列腺癌鉴别诊断中的应用价值[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 332-335.
[9] 王邦郁, 陈晓鹏, 唐国军, 王佳妮. 尿液细胞外囊泡circRNA分类器对高级别前列腺癌诊断价值的初步研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 339-342.
[10] 刘硕儒, 王功炜, 张斌, 李书豪, 胡成. 新型溶瘤病毒M1激活内质网应激致前列腺癌细胞凋亡的机制[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 388-393.
[11] 南方护骨联盟前列腺癌骨转移专家组. 前列腺癌骨转移诊疗专家共识(2023版)[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 201-208.
[12] 李映安, 晋云, 储心昀, 胡苹苹, 王峻峰. 混合现实技术在腹腔镜肝切除术中导航的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 401-406.
[13] 中国医师协会结直肠肿瘤专业委员会, 中国抗癌协会大肠癌专业委员会, 北京整合医学学会结直肠肿瘤分会. 吲哚菁绿近红外荧光血管成像技术应用于腹腔镜结直肠手术中吻合口血供判断中国专家共识(2023版)[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 441-447.
[14] 邱文龙, 刘军广, 胡刚, 李博, 李月刚, 梅世文, 权继传, 庄孟, 迟崇巍, 王锡山, 汤坚强. 基于肠脂垂的近红外荧光血管造影技术在预防腹腔镜超低位直肠癌经括约肌间切除术后吻合口漏中的应用价值[J]. 中华结直肠疾病电子杂志, 2023, 12(04): 288-295.
[15] 王苏贵, 皇立媛, 姜福金, 吴自余, 张先云, 李强, 严大理. 异质性细胞核核糖蛋白A2B1在前列腺癌中的作用及其靶向中药活性成分筛选研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 731-736.
阅读次数
全文


摘要