切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2024, Vol. 18 ›› Issue (04) : 303 -308. doi: 10.3877/cma.j.issn.1674-3253.2024.04.001

医学前沿

2024年美国泌尿外科学会年会结石领域手术治疗相关热点研究及解读
苏博兴1, 肖博1, 李建兴1,()   
  1. 1. 102218 北京,清华大学附属北京清华长庚医院泌尿外科,清华大学临床医学院
  • 收稿日期:2024-05-21 出版日期:2024-08-01
  • 通信作者: 李建兴
  • 基金资助:
    北京市自然科学基金(7222239); 首府地区公立医院高水平临床专科建设示范工程,内蒙古自治区人民医院-北京郭应禄泌尿外科发展基金会(12024C06012)

Hot research and interpretation of surgical therapy for stone disease in the annual meeting of American Urology Association in 2024

Boxing Su1, Bo Xiao1, Jianxing Li1,()   

  1. 1. Department of Urology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
  • Received:2024-05-21 Published:2024-08-01
  • Corresponding author: Jianxing Li
引用本文:

苏博兴, 肖博, 李建兴. 2024年美国泌尿外科学会年会结石领域手术治疗相关热点研究及解读[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 303-308.

Boxing Su, Bo Xiao, Jianxing Li. Hot research and interpretation of surgical therapy for stone disease in the annual meeting of American Urology Association in 2024[J]. Chinese Journal of Endourology(Electronic Edition), 2024, 18(04): 303-308.

本文主要总结2024年美国泌尿外科年会中泌尿系结石的手术治疗研究热点,并从手术治疗相关基础研究,不同术式对比的多中心随机对照试验,手术并发症相关研究,新器械新设备研究,机器人辅助及人工智能在结石手术中的应用等五大方面进行分享及解读。

This article mainly summarizes the research hotspots on surgical treatment of urinary tract stones at the Annual meeting of American Urological Association. The basic research related to surgical therapy, multi-center randomized controlled trials comparing different surgical methods, surgical complications related research, research on new instruments and equipment, and the application of robot-assisted and artificial intelligence in stone surgery were shared and interpreted.

[1]
Gao BM, Orange CA, Sharifi SH, et al. In-vivo acute ureteral dilation using electromotive drug administration (EMDA) in the porcine ureter[J/OL]. J Urol, 2024, 211(5S): e185
[2]
Khargi R, Gupta K, Ricapito A, et al. Intrarenal pressures (IRP) during percutaneous nephrolithotomy (PCNL): randomized control trial comparing 24F to miniPCNL suction (s-mPCNL) and miniPCNL non-suction (ns-mPCNL) sheaths[J/OL]. J Urol, 2024, 211(5S): e749.
[3]
Yaghoubian A, Gupta K, Connors C, et al. A randomized trial assessing renal damage caused by new high power lasers during ureteroscopic laser lithotripsy[J/OL]. J Urol, 2024, 211(5S): e983.[2024-05-01].
[4]
Zoeir A, Zaghloul T, Mamdoh H, et al. Comparison of transperitoneal laparoscopic ureterolithotomy, retrograde flexible ureteroscopy, and mini-percutaneous antegrade ureteroscopic lithotripsy in the management of large proximal ureteral stones (1.5-2 cm): a prospective randomized trial[J/OL]. J Urol, 2024, 211(5S): e481.
[5]
Türk C, Petřík A, Sarica K, et al. EAU Guidelines on interventional treatment for urolithiasis [J]. Eur Urol, 2016, 69(3): 475-82.
[6]
Jiang P, Xie L, Arada R, et al. Qualitative review of clinical Guidelines for medical and surgical management of urolithiasis: consensus and controversy 2020 [J]. J Urol, 2021, 205(4):999-1008.
[7]
Wiseman O, Smith D, Starr K, et al. PUrE RCT 1: clinical and cost-effectiveness of flexible ureterorenoscopy and extracorporeal shockwave lithotripsy for lower pole stones ≤10 mm [J/OL]. J Urol, 2024, 211(5S): e980.
[8]
Smith D, Wiseman O, Starr K, et al. PUrE RCT 2: clinical and cost-effectiveness of furs and percutaneous nephrolithotomy for lower pole stones 10-25mm [J/OL]. J Urol, 2024, 211(5S): e980.
[9]
Traxer O, Thomas A. Prospective evaluation and classification of ureteral wall injuries resulting from insertion of a ureteral access sheath during retrograde intrarenal surgery[J]. J Urol, 2013,1 89(2): 580-584.
[10]
Cumpanas AD, Lavasani SA, Saadat S, et al. Ureteral strictures following ureteroscopic ureteral wall injury: a previously unidentified concern[J/OL]. J Urol, 2024,211(5S):e750.
[11]
Baiamonte D, Lampasona I, Altomare S, et al. Monocyte distribution width (MDW) to diagnose urosepsis in patients with urinary stones and to monitor their responses to therapies in an emergency setting[J/OL]. J Urol, 2024, 211(5S): e662.
[12]
Song H, Xiao B, Hu W, et al. Incidence and risk factors of acute kidney injury after percutaneous nephrolithotomy[J/OL]. J Urol, 2024, 211(5S): e1268.
[13]
Tanaka Y, Yoshimura Y, Hamamoto S, et al. A new surgical technology with femtosecond lasers towards no thermal injury in endoscopic surgery[J/OL]. J Urol, 2024, 211(5S): e483.
[14]
Houlihan I, Avisha Pandey A, Smita De S, et al. Effect of stone-targeting nanomaterials on fragment size using photonic lithotripsy[J/OL]. J Urol, 2024, 211(5S): e483.
[15]
Wang Z, Han P, Lu P, et al. In vitro and in vivo studies on bacteria and encrustation resistance of PLA-Ciprofloxacin-coating ureteral stent application[J/OL]. J Urol, 2024, 211(5S): e485.
[16]
Chawareb EA, Zein M, Baba BE, et al.Prospective clinical assessment of the ILY robotic flexible ureteroscopy platform[J/OL]. J Urol, 2024, 211(5S): e487.
[17]
Kim J, Ketsuwan C, Song KS, et al. First Feasibility of laser lithotripsy in robotic-assisted retrograde intrarenal surgery using zamenix in an in-vitro model[J/OL]. J Urol, 2024, 211(5S): e488.
[18]
Salah M, Laymon M, Alnawasra H, et al.Optimizing outcome reporting after robotic flexible ureteroscopy for management of renal calculi: introducing the concept of tetrafecta[J/OL]. J Urol, 2024, 211(5S): e36.
[19]
Landman J, Desai M, Patel RM, et al. Percutaneous nephrolithotomy (PCNL): the initial clinical experience[J/OL]. J Urol, 2024, 211(5S): e462.
[20]
Taguchi K, Hamamoto S, Yamashita S, et al. Evaluating the efficacy of robot-assisted fluoroscopic renal puncture in the supine position: a global multicenter first-in-human trial[J/OL]. J Urol, 2024, 211(5S): e462.
[21]
Maciolek K, Lu D, Oguz I, et al. Automated analysis of stone dust during ureteroscopy to predict stone free status using computer vision models[J/OL]. J Urol, 2024, 211(5S): e552.
[22]
Krueger A, Smith DM, Parzych AT, et al. Impact of integrated, real-time digital measurement on surgeon decision making in ureteroscopic stone surgery[J/OL]. J Urol, 2024, 211(5S): e982.
[23]
Luo D, Wang B, Liu Y, et al. The study of automatic recognition of stone components using digital images from intraoperative flexible ureteroscopy[J/OL]. J Urol, 2024, 211(5S): e982.
[24]
Song H, Xia Y, Song Y, et al. Evaluating the performance of different large language models on health consultation and patient education in urolithiasis[J/OL]. J Urol, 2024, 211(5S): e391.
[1] 罗刚, 泮思林, 孙玲玉, 李志新, 陈涛涛, 乔思波, 庞善臣. 一种新型语义网络分析模型对室间隔完整型肺动脉闭锁和危重肺动脉瓣狭窄胎儿右心发育不良程度的评价作用[J]. 中华医学超声杂志(电子版), 2024, 21(04): 377-383.
[2] 伯小皖, 郭乐杭, 余松远, 李明宙, 孙丽萍. 甲状腺结节人工智能自动分割和分类系统的建立和验证[J]. 中华医学超声杂志(电子版), 2024, 21(03): 304-309.
[3] 刘韩, 王胰, 舒庆兰, 彭博, 尹立雪, 谢盛华. 基于深度学习的超声心动图三尖瓣反流严重程度智能评估方法研究[J]. 中华医学超声杂志(电子版), 2024, 21(02): 121-127.
[4] 成汉林, 史中青, 戚占如, 王小贤, 曾子炀, 单淳劼, 钱隼南, 罗守华, 姚静. 基于深度学习的超声心动图动态图像切面识别研究[J]. 中华医学超声杂志(电子版), 2024, 21(02): 128-136.
[5] 赫兰, 杨泽堃, 张颖, 王玉东, 陈伟导, 王一同, 申锷. 双输入BCNN-ResNet模型对超声颈动脉斑块稳定性的分类诊断价值[J]. 中华医学超声杂志(电子版), 2024, 21(02): 137-142.
[6] 钟佩芝, 杜宇. 龋病诊断方法的研究进展[J]. 中华口腔医学研究杂志(电子版), 2024, 18(02): 73-79.
[7] 黄海, 程必盛, 黄健. 2024年欧洲泌尿外科学会年会:前列腺癌研究的前沿探索与未来趋势[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 202-207.
[8] 陈睿龙, 李祥, 马健, 姜超, 朱腾飞, 王毅. 口腔黏膜输尿管成形术与狭窄段切除吻合术治疗输尿管狭窄的疗效比较[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 254-258.
[9] 俞国杰, 瓦热斯·先木西丁, 米尔扎提·麦麦提, 吴婷, 张洁祥. 复发性泌尿系结石成分变化及其影响因素分析[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 259-265.
[10] 詹留松, 刘百川, 赵建朋, 薛国详. 可弯曲负压吸引鞘辅助输尿管软镜钬激光碎石术[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 271-276.
[11] 杨龙雨禾, 王跃强, 招云亮, 金溪, 卫娜, 杨智明, 张贵福. 人工智能辅助临床决策在泌尿系肿瘤的应用进展[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 178-182.
[12] 李云智, 蒋晓峰, 金铭, 杨江华, 李海斌, 赵盟杰, 刘冬, 高国静, 孟繁超, 崔功静, 廖晓星. 输尿管软镜碎石术治疗累计直径>2 cm上尿路结石一期清石率影响因素及预测模型建立[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 58-63.
[13] 方道成, 王勇, 胡媛媛. 泌尿系结石患者尿液菌谱及药敏特点分析[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 64-68.
[14] 解良婕, 王剑, 阳韬. 采用AI的CT影像特征对肺结节良恶性鉴别的价值分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 242-246.
[15] 彭子洋, 王志博, 王丹, 彭浩茜, 王蕾, 彭薇, 王娟娟, 李宇, 刘学民, 吴荣谦, 向俊西, 吕毅. 智能化辅助图像实时去雾技术在腹腔镜胆囊切除术中的应用[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 328-333.
阅读次数
全文


摘要