| [1] |
Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024[J]. CA A Cancer J Clin, 2024, 74(1): 12-49. DOI: 10.3322/caac.21820.
|
| [2] |
Han B, Zheng R, Zeng H, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4(1): 47-53. DOI: 10.1016/j.jncc.2024.01.006.
|
| [3] |
Ronneberger O, et al. Medical image computing and computer-assisted intervention-MICCAI 2015 [M]. Lecture Notes in Computer Science, 2015, 9351: 234-241.
|
| [4] |
Ren J, Sadimin E, Foran DJ, et al. Computer aided analysis of prostate histopathology images to support a refined Gleason grading system[C]//Medical Imaging 2017: Image Processing,Orlando, Florida, USA. SPIE, 2017: 101331V</first_page>. DOI: 10.1117/12.2253887.
|
| [5] |
Li W, Li J, Sarma KV, et al. Path R-CNN for prostate cancer diagnosis and gleason grading of histological images[J]. IEEE Trans Med Imag, 2019, 38(4): 945-954. DOI: 10.1109/TMI.2018.2875868.
|
| [6] |
Salvi M, Bosco M, Molinaro L, et al. A hybrid deep learning approach for gland segmentation in prostate histopathological images[J]. Artif Intell Med, 2021, 115: 102076. DOI: 10.1016/j.artmed.2021.102076.
|
| [7] |
Silva-Rodríguez J, Colomer A, Naranjo V. WeGleNet: a weakly-supervised convolutional neural network for the semantic segmentation of Gleason grades in prostate histology images[J]. Comput Med Imaging Graph, 2021, 88: 101846. DOI: 10.1016/j.compmedimag.2020.101846.
|
| [8] |
Bukowy JD, Foss H, McGarry SD, et al. Accurate segmentation of prostate cancer histomorphometric features using a weakly supervised convolutional neural network[J]. J Med Imaging (Bellingham), 2020, 7(5): 057501. DOI: 10.1117/1.jmi.7.5.057501.
|
| [9] |
Pantanowitz L, Quiroga-Garza GM, Bien L, et al. An artificial intelligence algorithm for prostate cancer diagnosis in whole slide images of core needle biopsies: a blinded clinical validation and deployment study[J]. Lancet Digit Health, 2020, 2(8): e407-e416. DOI: 10.1016/S2589-7500(20)30159-X.
|
| [10] |
Bulten W, Pinckaers H, van Boven H, et al. Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study[J]. Lancet Oncol, 2020, 21(2): 233-241. DOI: 10.1016/s1470-2045(19)30739-9.
|
| [11] |
Ström P, Kartasalo K, Olsson H, et al. Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study[J]. Lancet Oncol, 2020, 21(2): 222-232. DOI: 10.1016/s1470-2045(19)30738-7.
|
| [12] |
Duenweg SR, Brehler M, Bobholz SA, et al. Comparison of a machine and deep learning model for automated tumor annotation on digitized whole slide prostate cancer histology[J]. PLoS One, 2023, 18(3): e0278084. DOI: 10.1371/journal.pone.0278084.
|
| [13] |
Campanella G, Hanna MG, Geneslaw L, et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images[J]. Nat Med, 2019, 25(8): 1301-1309. DOI: 10.1038/s41591-019-0508-1.
|
| [14] |
Fogarty R, Goldgof D, Hall L, et al. Classifying malignancy in prostate glandular structures from biopsy scans with deep learning[J]. Cancers (Basel), 2023, 15(8): 2335. DOI: 10.3390/cancers15082335.
|
| [15] |
Inamdar MA, Raghavendra U, Gudigar A, et al. A novel attention-based model for semantic segmentation of prostate glands using histopathological images[J]. IEEE Access, 2023, 11: 108982-108994.
|
| [16] |
Patkar S, Harmon S, Sesterhenn I, et al. A selective CutMix approach improves generalizability of deep learning-based grading and risk assessment of prostate cancer[J]. J Pathol Inform, 2024, 15: 100381. DOI: 10.1016/j.jpi.2024.100381.
|
| [17] |
Kondejkar T, Al-Heejawi SMA, Breggia A, et al. Multi-scale digital pathology patch-level prostate cancer grading using deep learning: use case evaluation of DiagSet dataset[J]. Bioengineering (Basel), 2024, 11(6): 624. DOI: 10.3390/bioengineering11060624.
|
| [18] |
Shao Y, Bazargani R, Karimi D, et al. Prostate cancer risk stratification by digital histopathology and deep learning[J]. JCO Clin Cancer Inform, 2024, 8: e2300184. DOI: 10.1200/CCI.23.00184.
|
| [19] |
Salvi M, Manini C, López JI, et al. Deep learning approach for accurate prostate cancer identification and stratification using combined immunostaining of cytokeratin, p63, and racemase[J]. Comput Med Imaging Graph, 2023, 109: 102288. DOI: 10.1016/j.compmedimag.2023.102288.
|
| [20] |
Karageorgos GM, Cho S, McDonough E, et al. Deep learning-based automated pipeline for blood vessel detection and distribution analysis in multiplexed prostate cancer images[J]. Front Bioinform, 2023, 3: 1296667. DOI: 10.3389/fbinf.2023.1296667.
|
| [21] |
Martell MT, Haven NJM, Cikaluk BD, et al. Deep learning-enabled realistic virtual histology with ultraviolet photoacoustic remote sensing microscopy[J]. Nat Commun, 2023, 14(1): 5967. DOI: 10.1038/s41467-023-41574-2.
|
| [22] |
Wong PF, McNeil C, Wang Y, et al. Clinical-grade validation of an autofluorescence virtual staining system with human experts and a deep learning system for prostate cancer[J]. Mod Pathol, 2024, 37(11): 100573. DOI: 10.1016/j.modpat.2024.100573.
|
| [23] |
Katsamenis OL, Olding M, Warner JA, et al. X-ray micro-computed tomography for nondestructive three-dimensional (3D) X-ray histology[J]. Am J Pathol, 2019, 189(8): 1608-1620. DOI: 10.1016/j.ajpath.2019.05.004.
|
| [24] |
Lin L, Wang LV. The emerging role of photoacoustic imaging in clinical oncology[J]. Nat Rev Clin Oncol, 2022, 19(6): 365-384. DOI: 10.1038/s41571-022-00615-3.
|
| [25] |
Tu H, Liu Y, Turchinovich D, et al. Stain-free histopathology by programmable supercontinuum pulses[J]. Nature Photon, 2016, 10(8): 534-540. DOI: 10.1038/nphoton.2016.94.
|
| [26] |
Huisken J, Swoger J, Del Bene F, et al. Optical sectioning deep inside live embryos by selective plane illumination microscopy[J]. Science, 2004, 305(5686): 1007-1009. DOI: 10.1126/science.1100035.
|
| [27] |
Tanaka N, Kanatani S, Tomer R, et al. Whole-tissue biopsy phenotyping of three-dimensional tumours reveals patterns of cancer heterogeneity[J]. Nat Biomed Eng, 2017, 1(10): 796-806. DOI: 10.1038/s41551-017-0139-0.
|
| [28] |
Glaser AK, Reder NP, Chen Y, et al. Light-sheet microscopy for slide-free non-destructive pathology of large clinical specimens[J]. Nat Biomed Eng, 2017, 1(7): 0084. DOI: 10.1038/s41551-017-0084.
|
| [29] |
Glaser AK, Reder NP, Chen Y, et al. Multi-immersion open-top light-sheet microscope for high-throughput imaging of cleared tissues. Nat Commun[J]. 2019, 10(1): 2781. DOI: 10.1038/s41467-019-10534-0.
|
| [30] |
Glaser AK, Bishop KW, Barner LA, et al. A hybrid open-top light-sheet microscope for versatile multi-scale imaging of cleared tissues[J]. Nat Methods, 2022, 19(5): 613-619. DOI: 10.1038/s41592-022-01468-5.
|
| [31] |
Xie W, Reder NP, Koyuncu C, et al. Prostate cancer risk stratification via nondestructive 3d pathology with deep learning-assisted gland analysis[J]. Cancer Res, 2022, 2(2): 334-345. DOI: 10.1158/0008-5472.CAN-21-2843.
|
| [32] |
Serafin R, Koyuncu C, Xie W, et al. Nondestructive 3D pathology with analysis of nuclear features for prostate cancer risk assessment[J]. J Pathol, 2023, 260(4):390-401. DOI: 10.1002/path.6090.
|
| [33] |
Song AH, Williams M, Williamson DFK, et al. Weakly Supervised AI for Efficient Analysis of 3D Pathology Samples[J]. ArXiv, 2024, 187(10):2502-2520.e17. DOI: 10.1016/j.cell.2024.03.035.
|
| [34] |
Chen RJ, Ding T, Lu MY, et al. Towards a general-purpose foundation model for computational pathology[J]. Nat Med, 2024, 30(3): 850-862. DOI: 10.1038/s41591-024-02857-3.
|
| [35] |
Lu MY, Chen B, Williamson DFK, et al. A visual-language foundation model for computational pathology[J]. Nat Med, 2024, 30(3): 863-874. DOI: 10.1038/s41591-024-02856-4.
|
| [36] |
Xu H, Usuyama N, Bagga J, et al. A whole-slide foundation model for digital pathology from real-world data[J]. Nature, 2024, 630(8015): 181-188. DOI: 10.1038/s41586-024-07441-w.
|
| [37] |
Vorontsov E, Bozkurt A, Casson A, et al. A foundation model for clinical-grade computational pathology and rare cancers detection[J]. Nat Med, 2024, 30(10): 2924-2935. DOI: 10.1038/s41591-024-03141-0.
|
| [38] |
Wang X, Yang S, Zhang J, et al. Transformer-based unsupervised contrastive learning for histopathological image classification[J]. Med Image Anal, 2022, 81: 102559. DOI: 10.1016/j.media.2022.102559.
|
| [39] |
Ding T, Wagner SJ, Song AH, et al. Multimodal whole slide foundation model for pathology[J]. 2024, arXiv:2411.19666v1.
|
| [40] |
Hua S, Yan F, Shen T, et al. PathoDuet: foundation models for pathological slide analysis of H&E and IHC stains[J]. Med Image Anal, 2024, 97: 103289. DOI: 10.1016/j.media.2024.103289.
|
| [41] |
Huang Z, Bianchi F, Yuksekgonul M, et al. A visual–language foundation model for pathology image analysis using medical Twitter[J]. Nat Med, 2023, 29(9): 2307-2316. DOI: 10.1038/s41591-023-02504-3.
|
| [42] |
Pan X, AbdulJabbar K, Coelho-Lima J, et al. The artificial intelligence-based model ANORAK improves histopathological grading of lung adenocarcinoma[J]. Nat Cancer, 2024, 5(2): 347-363. DOI: 10.1038/s43018-023-00694-w.
|
| [43] |
Kim C, Gadgil SU, DeGrave AJ, et al. Transparent medical image AI via an image–text foundation model grounded in medical literature[J]. Nat Med, 2024, 30(4): 1154-1165. DOI: 10.1038/s41591-024-02887-x.
|
| [44] |
Wang X, Zhao J, Marostica E, et al. A pathology foundation model for cancer diagnosis and prognosis prediction[J]. Nature, 2024, 634(8035): 970-978. DOI: 10.1038/s41586-024-07894-z.
|
| [45] |
Marrón-Esquivel JM, Duran-Lopez L, Linares-Barranco A, et al. A comparative study of the inter-observer variability on Gleason grading against Deep Learning-based approaches for prostate cancer[J]. Comput Biol Med, 2023, 159: 106856. DOI: 10.1016/j.compbiomed.2023.106856.
|
| [46] |
Raciti P, Sue J, Retamero JA, et al. Clinical validation of artificial intelligence-augmented pathology diagnosis demonstrates significant gains in diagnostic accuracy in prostate cancer detection[J]. Arch Pathol Lab Med, 2023, 147(10): 1178-1185. DOI: 10.5858/arpa.2022-0066-oa.
|
| [47] |
Eminaga O, Abbas M, Kunder C, et al. Critical evaluation of artificial intelligence as a digital twin of pathologists for prostate cancer pathology[J]. Sci Rep, 2024, 14: 5284. DOI: 10.1038/s41598-024-55228-w.
|
| [48] |
Arvidsson I, Svanemur E, Marginean F, et al. Artificial intelligence for detection of prostate cancer in biopsies during active surveillance[J]. BJU Int, 2024, 134(6): 1001-1009. DOI: 10.1111/bju.16456.
|
| [49] |
Lee SH, Jang HJ. Deep learning-based prediction of molecular cancer biomarkers from tissue slides: a new tool for precision oncology[J]. Clin Mol Hepatol, 2022, 28(4): 754-772. DOI: 10.3350/cmh.2021.0394.
|
| [50] |
Lu MY, Chen B, Williamson DFK, et al. A multimodal generative AI copilot for human pathology[J]. Nature, 2024, 634(8033): 466-473. DOI: 10.1038/s41586-024-07618-3.
|