| [1] |
Siegel RL, Wagle NS, Cercek A, Smith RA, Jemal A. Colorectal cancer statistics, 2023[J]. CA Cancer J Clin, 2023 ,73(3): 33-254.
|
| [2] |
|
| [3] |
|
| [4] |
Ying Y, He W, Xiong Q, et al. Value of digital rectal examination in patients with suspected prostate cancer: a prospective cohort analysis study[J]. Transl Androl Urol, 2023, 12(11): 1666-1672. DOI: 10.21037/tau-23-371.
|
| [5] |
Matsukawa A, Yanagisawa T, Bekku K, et al. Comparing the performance of digital rectal examination and PSA as a screening test for prostate cancer: a systematic review and meta-analysis[J]. Eur Urol, 2024, 85: S413-S414. DOI: 10.1016/s0302-2838(24)00375-0.
|
| [6] |
da Silva Junior MM, Capibaribe DM, Avilez ND, et al. Digital rectal examination impact on PSA derivatives and prostate biopsy triggers: a contemporary study[J]. Int Urol Nephrol, 2022, 54(9): 2117-2123. DOI: 10.1007/s11255-022-03283-5.
|
| [7] |
|
| [8] |
|
| [9] |
Remmers S, Bangma CH, Godtman RA, et al. Relationship between baseline prostate-specific antigen on cancer detection and prostate cancer death: long-term follow-up from the European randomized study of screening for prostate cancer[J]. Eur Urol, 2023, 84(5): 503-509. DOI: 10.1016/j.eururo.2023.03.031.
|
| [10] |
Kohestani K, Månsson M, Arnsrud Godtman R, et al. The GÖTEBORG prostate cancer screening 2 trial: a prospective, randomised, population-based prostate cancer screening trial with prostate-specific antigen testing followed by magnetic resonance imaging of the prostate[J]. Scand J Urol, 2021, 55(2): 116-124. DOI: 10.1080/21681805.2021.1881612.
|
| [11] |
Bratt O, Auvinen A, Arnsrud Godtman R, et al. Screening for prostate cancer: evidence, ongoing trials, policies and knowledge gaps[J]. BMJ Oncol, 2023, 2(1): e000039. DOI: 10.1136/bmjonc-2023-000039.
|
| [12] |
|
| [13] |
|
| [14] |
Matsugasumi T, Iwata T, Yamada Y, et al. Intraoperative ultrasound monitoring with superb microvascular imaging in focal cryotherapy for prostate cancer[J]. J Med Ultrason (2001), 2022, 49(3): 497-498. DOI: 10.1007/s10396-022-01206-6.
|
| [15] |
|
| [16] |
Turco S, Frinking P, Wildeboer R, et al. Contrast-enhanced ultrasound quantification: from kinetic modeling to machine learning[J]. Ultrasound Med Biol, 2020, 46(3): 518-543. DOI: 10.1016/j.ultrasmedbio.2019.11.008.
|
| [17] |
Zhu Y, Chen Y, Jiang J, et al. Comparison of contrast-enhanced ultrasound targeted biopsy versus standard systematic biopsy for clinically significant prostate cancer detection: results of a prospective cohort study with 1024 patients[J]. World J Urol, 2019, 37(5): 805-811. DOI: 10.1007/s00345-018-2441-1.
|
| [18] |
|
| [19] |
|
| [20] |
Ma Q, Yang DR, Xue BX, et al. Transrectal real-time tissue elastography targeted biopsy coupled with peak strain index improves the detection of clinically important prostate cancer[J]. Oncol Lett, 2017, 14(1): 210-216. DOI: 10.3892/ol.2017.6126.
|
| [21] |
Xiang LH, Fang Y, Wan J, et al. Shear-wave elastography: role in clinically significant prostate cancer with false-negative magnetic resonance imaging[J]. Eur Radiol, 2019, 29(12): 6682-6689. DOI: 10.1007/s00330-019-06274-w.
|
| [22] |
Loch T. Computerized transrectal ultrasound (C-TRUS) of the prostate: detection of cancer in patients with multiple negative systematic random biopsies[J]. World J Urol, 2007, 25(4): 375-380. DOI: 10.1007/s00345-007-0181-8.
|
| [23] |
Ghai S, Eure G, Fradet V, et al. Assessing cancer risk on novel 29 MHz micro-ultrasound images of the prostate: creation of the micro-ultrasound protocol for prostate risk identification[J]. J Urol, 2016, 196(2): 562-569. DOI: 10.1016/j.juro.2015.12.093.
|
| [24] |
Chen D, Niu Y, Chen H, et al. Three-dimensional ultrasound integrating nomogram and the blood flow image for prostate cancer diagnosis and biopsy: a retrospective study[J]. Front Oncol, 2022, 12: 994296. DOI: 10.3389/fonc.2022.994296.
|
| [25] |
van der Aa AAMA, Mannaerts CK, Gayet MCW, et al. Three-dimensional greyscale transrectal ultrasound-guidance and biopsy core preembedding for detection of prostate cancer: Dutch clinical cohort study[J]. BMC Urol, 2019, 19(1): 23. DOI: 10.1186/s12894-019-0455-7.
|
| [26] |
Grey ADR, Scott R, Shah B, et al. Multiparametric ultrasound versus multiparametric MRI to diagnose prostate cancer (CADMUS): a prospective, multicentre, paired-cohort, confirmatory study[J]. Lancet Oncol, 2022, 23(3): 428-438. DOI: 10.1016/S1470-2045(22)00016-X.
|
| [27] |
|
| [28] |
|
| [29] |
Arif M, Starmans MPA, et al. Classification of clinically significant prostate cancer on multi-parametric MRI: a validation study comparing deep learning and radiomics[J]. Cancers (Basel), 2021, 14(1): 12. DOI: 10.3390/cancers14010012.
|
| [30] |
Zhang H, Li X, Zhang Y, et al. Diagnostic nomogram based on intralesional and perilesional radiomics features and clinical factors of clinically significant prostate cancer[J]. J Magn Reson Imaging, 2021, 53(5): 1550-1558. DOI: 10.1002/jmri.27486.
|
| [31] |
Morote J, Borque-Fernando A, Triquell M, et al. Multiparametric magnetic resonance imaging grades the aggressiveness of prostate cancer[J]. Cancers (Basel), 2022, 14(7): 1828. DOI: 10.3390/cancers14071828.
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
Niu S, Ding X, Liu B, et al. Radical prostatectomy without prior biopsy in selected patients evaluated by 18F-labeled prostate-specific membrane antigen-ligand positron emission tomography/computed tomography and multiparameter magnetic resonance imaging: a single-center, prospective, single-arm trial[J]. J Urol, 2024, 212(2): 280-289. DOI: 10.1097/JU.0000000000004025.
|
| [36] |
|
| [37] |
|
| [38] |
Meissner VH, Rauscher I, Schwamborn K, et al. Radical prostatectomy without prior biopsy following multiparametric magnetic resonance imaging and prostate-specific membrane antigen positron emission tomography[J]. Eur Urol, 2022, 82(2): 156-160. DOI: 10.1016/j.eururo.2021.11.019.
|
| [39] |
de Oliveira Correia ET, Baydoun A, Li Q, et al. Emerging and anticipated innovations in prostate cancer MRI and their impact on patient care[J]. Abdom Radiol, 2024, 49(10): 3696-3710. DOI: 10.1007/s00261-024-04423-4.
|
| [40] |
中国临床肿瘤学会指南工作委员会组织. 中国临床肿瘤学会(CSCO)前列腺癌诊疗指南-2023[M]. 北京: 人民卫生出版社, 2023.
|
| [41] |
|
| [42] |
Thomas J, Atluri S, Zucker I, et al. A multi-institutional study of 1, 111 men with 4K score, multiparametric magnetic resonance imaging, and prostate biopsy[J]. Urol Oncol, 2023, 41(10): 430.e9-430430.e16. DOI: 10.1016/j.urolonc.2023.07.001.
|
| [43] |
Voigt JD, Dong Y, Linder V, et al. Use of the 4Kscore test to predict the risk of aggressive prostate cancer prior to prostate biopsy: Overall cost savings and improved quality of care to the us healthcare system[J]. Rev Urol, 2017, 19(1): 1-10. DOI: 10.3909/riu0753.
|
| [44] |
Szeliski K, Adamowicz J, Gastecka A, et al. Modern urology perspectives on prostate cancer biomarkers[J]. Cent European J Urol, 2018, 71(4): 420-426. DOI: 10.5173/ceju.2018.1762.
|
| [45] |
Snipaitiene K, Bakavicius A, Lazutka JR, et al. Urinary microRNAs can predict response to abiraterone acetate in castration resistant prostate cancer: a pilot study[J]. Prostate, 2022, 82(4): 475-482. DOI: 10.1002/pros.24293.
|
| [46] |
Jiang P, Bai Y, Yan L, et al. Nanoarchitectonics-assisted simultaneous fluorescence detection of urinary dual miRNAs for noninvasive diagnosis of prostate cancer[J]. Anal Chem, 2023, 95(19): 7676-7684. DOI: 10.1021/acs.analchem.3c00701.
|
| [47] |
Delkov D, Yoanıdu L, Tomov D, et al. Oncometabolites in urine - a new opportunity for detection and prognosis of the clinical progress of verified prostate cancer-a pilot study[J]. Turk J Med Sci, 2022, 52(3): 699-706. DOI: 10.55730/1300-0144.5363.
|
| [48] |
Kazemifard N, Sadeghi A, Varaminian B, et al. Circulating tumor DNA applications in monitoring the treatment of metastatic colorectal cancer patients[J]. Gastroenterology and Hepatology from Bed to Bench, 2019, 12(suppl1): S14-S21.
|
| [49] |
Yan W, Xu T, Zhu H, et al. Clinical applications of cerebrospinal fluid circulating tumor DNA as a liquid biopsy for central nervous system tumors[J]. Onco Targets Ther, 2020, 13: 719-731. DOI: 10.2147/OTT.S229562.
|
| [50] |
Hahn AW, Stenehjem D, Nussenzveig R, et al. Evolution of the genomic landscape of circulating tumor DNA (ctDNA) in metastatic prostate cancer over treatment and time[J]. Cancer Treat Res Commun, 2019, 19: 100120. DOI: 10.1016/j.ctarc.2019.100120.
|
| [51] |
Bridges MC, Daulagala AC, Kourtidis A. LNCcation: lncRNA localization and function[J]. J Cell Biol, 2021, 220(2): e202009045. DOI: 10.1083/jcb.202009045.
|
| [52] |
Pudova E, Kobelyatskaya A, Emelyanova M, et al. Non-coding RNAs and the development of chemoresistance to docetaxel in prostate cancer: regulatory interactions and approaches based on machine learning methods[J]. Life (Basel), 2023, 13(12): 2304. DOI: 10.3390/life13122304.
|
| [53] |
Tan X, Chen WB, Lv DJ, et al. LncRNA SNHG1 and RNA binding protein hnRNPL form a complex and coregulate CDH1 to boost the growth and metastasis of prostate cancer[J]. Cell Death Dis, 2021, 12(2): 138. DOI: 10.1038/s41419-021-03413-4.
|
| [54] |
Fang Z, Xu C, Li Y, et al. A feed-forward regulatory loop between androgen receptor and PlncRNA-1 promotes prostate cancer progression [J].Cancer Lett, 2016, 374(1):62-74.
|
| [55] |
Cui Z, Gao H, Yan N, et al. LncRNA PlncRNA-1 accelerates the progression of prostate cancer by regulating PTEN/Akt axis[J]. Aging (Albany NY), 2021, 13(8): 12113-12128. DOI: 10.18632/aging.202919.
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
Tang DE, Dai Y, He JX, et al. Targeting the KDM4B-AR-c-Myc axis promotes sensitivity to androgen receptor-targeted therapy in advanced prostate cancer[J]. J Pathol, 2020, 252(2): 101-113. DOI: 10.1002/path.5495.
|
| [60] |
De Laere B, Oeyen S, Mayrhofer M, et al. TP53 outperforms other androgen receptor biomarkers to predict abiraterone or enzalutamide outcome in metastatic castration-resistant prostate cancer[J]. Clin Cancer Res, 2019, 25(6): 1766-1773. DOI: 10.1158/1078-0432.CCR-18-1943.
|
| [61] |
|
| [62] |
Caceres A, Jene A, Esko T, et al. Extreme downregulation of chromosome Y and Alzheimer's disease in men[J]. Neurobiol Aging, 2020, 90: 150.e1-150150.e4. DOI: 10.1016/j.neurobiolaging.2020.02.003.
|
| [63] |
Gupta H, Inoue H, Nakai Y, et al. Progressive spreading of DNA methylation in the GSTP1 promoter CpG island across transitions from precursors to invasive prostate cancer[J]. Cancer Prev Res (Phila), 2023, 16(8): 449-460. DOI: 10.1158/1940-6207.CAPR-22-0485.
|
| [64] |
付卫华, 贾维胜, 何凡, 等. 尿沉渣及尿外泌体中PCA3 mRNA评分对前列腺特异抗原灰区患者前列腺癌的诊断价值研究[J]. 局解手术学杂志, 2020, 29(9): 734-738. DOI: 10.11659/jjssx.05E020047.
|
| [65] |
|
| [66] |
Boorjian SA, Karnes RJ, Rangel LJ, et al. Mayo Clinic validation of the D'amico risk group classification for predicting survival following radical prostatectomy[J]. J Urol, 2008, 179(4): 1354-1360;discussion 1360-1361. DOI: 10.1016/j.juro.2007.11.061.
|
| [67] |
Gnanapragasam VJ, Bratt O, Muir K, et al. The Cambridge Prognostic Groups for improved prediction of disease mortality at diagnosis in primary non-metastatic prostate cancer: a validation study[J]. BMC Med, 2018, 16(1): 31. DOI: 10.1186/s12916-018-1019-5.
|
| [68] |
Olah C, Mairinger F, Wessolly M, et al. Enhancing risk stratification models in localized prostate cancer by novel validated tissue biomarkers[J]. Prostate Cancer Prostatic Dis, 2024, 28(3): 773-781. DOI: 10.1038/s41391-024-00918-9.
|
| [69] |
|
| [70] |
Gong L, Xu M, Fang M, et al. Noninvasive prediction of high-grade prostate cancer via biparametric MRI radiomics[J]. J Magn Reson Imaging, 2020, 52(4): 1102-1109. DOI: 10.1002/jmri.27132.
|
| [71] |
|
| [72] |
|
| [73] |
|