切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2025, Vol. 19 ›› Issue (06) : 727 -735. doi: 10.3877/cma.j.issn.1674-3253.2025.06.007

临床研究

不同亚型前列腺癌新辅助化疗后盆腔淋巴结转移的风险因素及时间分布
田超1, 黄若曦1,(), 蒋茂林1, 谢崇伟2, 刁鹏飞1, 钟苏权1, 陈东1, 王航涛1, 陈桂柳1, 陈虞娟1, 李国良1   
  1. 1512000 韶关,粤北人民医院泌尿外科
    2512000 韶关,粤北人民医院医学研究中心
  • 收稿日期:2025-03-10 出版日期:2025-12-01
  • 通信作者: 黄若曦
  • 基金资助:
    韶关市科技计划项目(211109164531248)

Risk factors and time distribution of pelvic lymph node metastasis after neoadjuvant chemotherapy in different subtypes of prostate cancer

Chao Tian1, Ruoxi Huang1,(), Maolin Jiang1, Chongwei Xie2, Pengfei Diao1, Suquan Zhong1, Dong Chen1, Hangtao Wang1, Guiliu Chen1, Yujian Chen1, Guoliang Li1   

  1. 1Department of Urology, Yuebei People's Hospital, Shaoguan 512000, China
    2Medical research center, Yuebei People's Hospital, Shaoguan 512000, China
  • Received:2025-03-10 Published:2025-12-01
  • Corresponding author: Ruoxi Huang
引用本文:

田超, 黄若曦, 蒋茂林, 谢崇伟, 刁鹏飞, 钟苏权, 陈东, 王航涛, 陈桂柳, 陈虞娟, 李国良. 不同亚型前列腺癌新辅助化疗后盆腔淋巴结转移的风险因素及时间分布[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 727-735.

Chao Tian, Ruoxi Huang, Maolin Jiang, Chongwei Xie, Pengfei Diao, Suquan Zhong, Dong Chen, Hangtao Wang, Guiliu Chen, Yujian Chen, Guoliang Li. Risk factors and time distribution of pelvic lymph node metastasis after neoadjuvant chemotherapy in different subtypes of prostate cancer[J/OL]. Chinese Journal of Endourology(Electronic Edition), 2025, 19(06): 727-735.

目的

探究不同亚型前列腺癌新辅助化疗后盆腔淋巴结转移的风险因素及时间分布。

方法

选择2017年1月至2020年1月于我院接受治疗的162例行新辅助化疗的前列腺癌患者为研究对象,根据癌症基因图谱研究网络(TCGA)分类器分为ERG型、ETV1型、ETV4型、FLI1型4种分子亚型,探究分子分型与临床特征的关系,并分析不同分子亚型的前列腺癌新辅助化疗后盆腔淋巴结转移的时间分布规律。依据随访期间是否发生盆腔淋巴结转移分为转移组(n=65)和未转移组(n=97),通过单因素和多因素Logistic分析患者发生盆腔淋巴结转移的影响因素,构建列线图预测模型并验证。

结果

不同亚型的患者在Gleason评分、PSA、T分期、N分期、肿瘤分级、盆腔淋巴结转移方面的差异具有统计学意义(P<0.05)。Gleason评分、PSA、肿瘤分级、FLI1型为前列腺癌患者新辅助化疗后盆腔淋巴结转移的独立危险因素(P<0.05)。利用独立影响因素构建列线图预测模型,模型具有较好的区分度和准确性。前列腺癌新辅助化疗后总盆腔淋巴结转移风险时间呈双峰分布,转移高峰分别在新辅助化疗后第12个月和第30个月。

结论

分子分型是前列腺癌新辅助化疗后盆腔淋巴结转移的影响因素,且不同分子亚型前列腺癌新辅助化疗后盆腔淋巴结转移的时间有一定规律性。

Objective

To explore the risk factors and time distribution of pelvic lymph node metastasis after neoadjuvant chemotherapy in different subtypes of prostate cancer.

Methods

162 prostate cancer patients who received neoadjuvant chemotherapy in our hospital from January 2017 to January 2020 were selected as the research subjects. According to the cancer gene atlas (TCGA) classifier, they were divided into four molecular subtypes: ERG, ETV1, ETV4, and FLI1, to explore the relationship between molecular typing and clinical characteristics, and analyze the time distribution pattern of pelvic lymph node metastasis after neoadjuvant chemotherapy for prostate cancer with different molecular subtypes. According to whether pelvic lymph node metastasis occurred during the follow-up period, patients were divided into a metastatic group (n=65) and a non metastatic group (n=97). The influencing factors of pelvic lymph node metastasis in patients were analyzed through univariate and multivariate logistic analysis, and a nomogram prediction model was constructed and validated.

Results

The differences in Gleason score, PSA, T stage, N stage, tumor grade, and pelvic lymph node metastasis among patients with different subtypes were statistically significant (P<0.05). Gleason score, PSA, tumor grade, and FLI1 type are independent risk factors for pelvic lymph node metastasis in prostate cancer patients after neoadjuvant chemotherapy (P<0.05). Using independent influencing factors to construct a nomogram prediction model, the model has good discrimination and accuracy. The risk time of total pelvic lymph node metastasis of prostate cancer after neoadjuvant chemotherapy showed a bimodal distribution, and the peak of metastasis was in the 12th month and 30th month after neoadjuvant chemotherapy respectively.

Conclusion

Molecular typing is a influencing factor for pelvic lymph node metastasis in prostate cancer after neoadjuvant chemotherapy, and there is a certain regularity in the time of pelvic lymph node metastasis in different molecular subtypes of prostate cancer after neoadjuvant chemotherapy.

表1 前列腺癌分子分型与临床资料的关系[例(%)]
指标 ERG型(n=35) ETV1型(n=42) ETV4型(n=47) FLI1型(n=38) χ2 P
年龄(岁)         0.134 0.987
< 70 18(51.43) 23(54.76) 25(53.19) 21(55.26)    
≥70 17(48.57) 19(45.24) 22(46.81) 17(44.74)    
BMI(kg/m2         0.292 0.961
< 24 20(57.14) 22(52.38) 26(55.32) 22(57.89)    
≥24 15(42.86) 20(47.62) 21(44.68) 16(42.11)    
吸烟         0.148 0.986
19(54.29) 23(54.76) 24(51.06) 20(52.63)    
16(45.71) 19(45.24) 23(48.94) 18(47.37)    
饮酒         0.149 0.985
21(60.00) 24(57.14) 27(57.45) 23(60.53)    
14(40.00) 18(42.86) 20(42.55) 15(39.47)    
家族史         0.120 0.989
2(5.71) 2(4.76) 3(6.38) 2(5.26)    
33(94.29) 40(95.24) 44(93.62) 36(94.74)    
Gleason评分(分)         11.432 0.010
<5 11(31.43) 12(28.57) 12(25.53) 1(2.63)    
5~7 18(51.43) 22(52.38) 24(51.06) 17(44.74)    
≥8 6(17.14) 8(19.05) 11(23.40) 20(52.63)    
PSA(ng/mL)         14.098 0.003
<10 11(31.43) 12(28.57) 12(25.53) 0(0)    
10~19 14(40.00) 18(42.86) 21(44.68) 9(23.68)    
≥20 10(28.57) 12(28.57) 14(29.79) 29(76.32)    
肿瘤数量         0.550 0.908
单个 32(91.43) 38(90.48) 43(91.49) 36(94.74)    
多个 3(8.67) 4(9.52) 4(8.51) 2(5.26)    
肿瘤直径(cm)         0.228 0.973
< 3 22(62.86) 26(61.90) 29(61.70) 22(57.89)    
≥3 13(37.14) 16(38.10) 18(38.30) 16(42.11)    
T分期         8.354 0.039
T1 9(25.71) 12(28.57) 13(27.66) 2(5.26)    
T2 24(68.57) 28(66.67) 31(65.96) 25(65.79)    
T3 2(5.71) 2(4.76) 3(6.38) 11(28.95)    
N分期         9.003 0.029
N0 19(54.29) 23(54.76) 27(57.45) 18(47.37)    
N1 8(22.86) 10(23.81) 12(25.53) 5(13.16)    
N2 5(14.29) 6(14.29) 4(8.51) 5(13.16)    
N3 3(8.57) 3(7.14) 4(8.51) 10(26.32)    
肿瘤分级         30.000 <0.001
低分化 4(11.43) 5(11.90) 5(10.64) 20(52.63)    
中分化 15(42.86) 19(45.24) 21(44.68) 13(34.21)    
高分化 16(45.71) 18(42.86) 21(44.68) 5(13.16)    
盆腔淋巴转移         61.641 <0.001
27(77.14) 32(76.19) 36(76.60) 2(5.26)    
8(22.86) 10(23.81) 11(23.40) 36(94.74)    
对化疗药物敏感性         0.086 0.993
敏感 24(68.57) 28(66.67) 32(68.09) 25(65.79)    
不敏感 11(31.43) 14(33.33) 15(31.91) 13(34.21)    
表2 前列腺癌新辅助化疗后盆腔淋巴结转移的单因素分析
组别 转移组(n=65) 未转移组(n=97) 统计值 P
年龄[岁,(±s)] 67.97±5.35 68.16±5.47 t=0.219 0.827
BMI[kg/m2,(±s)] 24.10±1.12 23.84±1.23 t=1.366 0.174
Gleason评分[分,(±s)] 8.75±2.34 6.93±1.86 t=5.497 <0.001
PSA[ng/ml,(±s)] 13.62±2.58 9.78±2.35 t=9.800 <0.001
婚姻状况[例(%)]     χ2=0.059 0.809
已婚 64 (98.46) 95 (97.94)    
未婚 1 (1.54) 2 (2.06)    
吸烟[例(%)]     χ2=0.025 0.874
35 (53.85) 51 (52.58)    
30 (46.15) 46 (47.42)    
饮酒[例(%)]     χ2=0.001 0.970
38 (58.46) 57 (58.76)    
27 (41.54) 40 (41.24)    
高血压[例(%)]     χ2=0.001 0.975
33 (50.77) 49 (50.52)    
32 (49.23) 48 (49.48)    
糖尿病[例(%)]     χ2=0.001 0.978
28 (43.08) 42 (43.30)    
37 (56.92) 55 (56.70)    
家族史[例(%)]     χ2=0.074 0.786
4 (6.15) 5 (5.15)    
61 (93.85) 92 (94.85)    
分子分型[例(%)]     χ2=61.634 <0.001
ERG型 7 (10.77) 29 (29.90)    
ETV1型 9 (13.85) 31 (31.96)    
ETV4型 13 (20.00) 35 (36.08)    
FLI1型 36 (55.38) 2 (2.06)    
肿瘤数量[例(%)]     χ2=0.016 0.899
单个 60 (92.31) 89 (91.75)    
多个 5 (7.69) 8 (8.25)    
肿瘤直径(cm)     χ2=0.008 0.927
< 3 40 (61.54) 59 (60.82)    
≥3 25 (38.46) 38 (39.18)    
T分期[例(%)]     χ2=26.870 <0.001
T1 1 (1.54) 35 (36.08)    
T2 46 (70.77) 62 (63.92)    
T3 18 (100.00) 0 (0)    
N分期[例(%)]     χ2=29.542 <0.001
N0 18 (27.69) 69 (71.13)    
N1 15 (23.08) 20 (20.62)    
N2 13 (20.00) 7 (7.22)    
N3 19 (29.23) 1 (1.03)    
肿瘤分级[例(%)]     χ2=5.957 0.015
低分化 34 (52.31) 0 (0)    
中分化 28 (43.08) 40 (41.24)    
高分化 3 (4.62) 57 (58.76)    
对化疗药物敏感性[例(%)]     χ2=0.063 0.802
敏感 43 (66.15) 66 (68.04)    
不敏感 22 (33.85) 31 (31.96)    
表3 前列腺癌新辅助化疗后盆腔淋巴结转移的多因素分析
图1 前列腺癌新辅助化疗后盆腔淋巴结转移的列线图预测模型
图2 列线图模型预测前列腺癌患者新辅助化疗后盆腔淋巴结转移的ROC曲线注:a为验证前;b为验证后
图3 列线图模型预测前列腺癌患者新辅助化疗后盆腔淋巴结转移的校准曲线注:a为验证前;b为验证后
表4 Bootstrap内部验证前后模型区分度指标比较
图4 前列腺癌新辅助化疗后总盆腔淋巴结转移风险时间分布
图5 不同分子分型前列腺癌新辅助化疗后总盆腔淋巴结转移风险时间分布
[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
Kawase M, Kato D, Tobisawa Y, et al. Efficacy and safety of combination neoadjuvant chemo-hormonal therapy and robot-assisted radical prostatectomy for oligometastatic prostate cancer[J]. Int J Urol, 2024, 31(7): 826-828. DOI: 10.1111/iju.15448.
[3]
Zhou E, Zhang B, Zhu K, et al. A TMPRSS2-ERG gene signature predicts prognosis of patients with prostate adenocarcinoma[J]. Clin Transl Med, 2020, 10(8): e216. DOI: 10.1002/ctm2.216.
[4]
陈露, 董柏君, 董樑, 等. 前列腺癌新辅助治疗上海专家共识[J]. 上海医学, 2023, 46(10): 643-648. DOI: 10.19842/j.cnki.issn.0253-9934.2023.10.001.
[5]
Hiremath A, Shiradkar R, Fu P, et al. An integrated nomogram combining deep learning, Prostate Imaging-Reporting and Data System (PI-RADS) scoring, and clinical variables for identification of clinically significant prostate cancer on biparametric MRI: a retrospective multicentre study[J]. Lancet Digit Health, 2021, 3(7): e445-e454. DOI: 10.1016/S2589-7500(21)00082-0.
[6]
Wang H, Zhang J, Bao S, et al. Preoperative MRI-based radiomic machine-learning nomogram may accurately distinguish between benign and malignant soft-tissue lesions: a two-center study[J]. J Magn Reson Imaging, 2020, 52(3): 873-882. DOI: 10.1002/jmri.27111.
[7]
Watanabe R, Miura N, Kurata M, et al. Spatial gene expression analysis reveals characteristic gene expression patterns of de novo neuroendocrine prostate cancer coexisting with androgen receptor pathway prostate cancer[J]. Int J Mol Sci, 2023, 24(10): 8955. DOI: 10.3390/ijms24108955.
[8]
Hardiman G, Savage SJ, Hazard ES, et al. A systems approach to interrogate gene expression patterns in African American men presenting with clinically localized prostate cancer[J]. Cancers (Basel), 2021, 13(20): 5143. DOI: 10.3390/cancers13205143.
[9]
Meng J, Zhou Y, Lu X, et al. Immune response drives outcomes in prostate cancer: implications for immunotherapy[J]. Mol Oncol, 2021, 15(5): 1358-1375. DOI: 10.1002/1878-0261.12887.
[10]
Brunese L, Mercaldo F, Reginelli A, et al. Formal methods for prostate cancer Gleason score and treatment prediction using radiomic biomarkers[J]. Magn Reson Imaging, 2020, 66: 165-175. DOI: 10.1016/j.mri.2019.08.030.
[11]
Culp MB, Soerjomataram I, Efstathiou JA, et al. Recent global patterns in prostate cancer incidence and mortality rates[J]. Eur Urol, 2020, 77(1): 38-52. DOI: 10.1016/j.eururo.2019.08.005.
[12]
Ma YF, Li GD, Sun X, et al. Identification of FAM107A as a potential biomarker and therapeutic target for prostate carcinoma[J]. Am J Transl Res, 2021, 13(9): 10163-10177.
[13]
Huang X, Cai W, Yuan W, et al. Identification of key lncRNAs as prognostic prediction models for colorectal cancer based on LASSO[J]. Int J Clin Exp Pathol, 2020, 13(4): 675-684.
[14]
Jiang J, Bi Y, Liu XP, et al. To construct a CeRNA regulatory network as prognostic biomarkers for bladder cancer[J]. J Cell Mol Med, 2020, 24(9): 5375-5386. DOI: 10.1111/jcmm.15193.
[15]
Hamm CA, Beetz NL, Savic LJ, et al. Artificial intelligence and radiomics in MRI-based prostate diagnostics[J]. Radiologe, 2020, 60(1): 48-55. DOI: 10.1007/s00117-019-00613-0.
[16]
汪雄, 肖峻. 前列腺癌术前新辅助治疗的研究现状[J]. 现代泌尿外科杂志, 2022, 27(12): 1069-1073. DOI: 10.3969/j.issn.1009-8291.2022.12.018.
[17]
Ge Q, Xu H, Yue D, et al. Neoadjuvant chemohormonal therapy in prostate cancer before radical prostatectomy: a systematic review and meta-analysis[J]. Front Oncol, 2022, 12: 906370. DOI: 10.3389/fonc.2022.906370.
[18]
Song Z, Tang Z, Liu H, et al. A clinical-radiomics nomogram may provide a personalized 90-day functional outcome assessment for spontaneous intracerebral hemorrhage[J]. Eur Radiol, 2021, 31(7): 4949-4959. DOI: 10.1007/s00330-021-07828-7.
[19]
Xie H, Ma S, Wang X, et al. Noncontrast computer tomography-based radiomics model for predicting intracerebral hemorrhage expansion: preliminary findings and comparison with conventional radiological model[J]. Eur Radiol, 2020, 30(1): 87-98. DOI: 10.1007/s00330-019-06378-3.
[20]
刘想, 张耀峰, 孙兆男, 等. 基于T2加权成像的影像组学列线图模型预测前列腺癌盆腔淋巴结转移[J]. 中南大学学报(医学版), 2022, 47(8): 1025-1036. DOI: 10.11817/j.issn.1672-7347.2022.210692.
[21]
赖树盛, 郑石磊. 基于磁共振T2WI-FS的影像组学对前列腺癌盆腔淋巴结转移的诊断价值[J]. 中国医科大学学报, 2021, 50(3): 230-234. DOI: 10.12007/j.issn.0258-4646.2021.03.008.
[22]
Narayanan R. Therapeutic targeting of the androgen receptor (AR) and AR variants in prostate cancer[J]. Asian J Urol, 2020, 7(3): 271-283. DOI: 10.1016/j.ajur.2020.03.002.
[23]
Kim TJ, Lee YH, Koo KC. Current status and future perspectives of androgen receptor inhibition therapy for prostate cancer: a comprehensive review[J]. Biomolecules, 2021, 11(4): 492. DOI: 10.3390/biom11040492.
[24]
Chi C, Fan L, Dong B, et al. Efficacy of neoadjuvant chemohormonal therapy in oligometastatic hormone-sensitive prostate cancer: a prospective, three-arm, comparative propensity score match analysis[J]. Clin Genitourin Cancer, 2021, 19(4): e223-e234. DOI: 10.1016/j.clgc.2021.02.004.
[25]
Gómez Rivas J, Ortega Polledo LE, De La Parra Sánchez I, et al. Current status of neoadjuvant treatment before surgery in high-risk localized prostate cancer[J]. Cancers (Basel), 2024, 17(1): 99. DOI: 10.3390/cancers17010099.
[26]
Esteves L, Caramelo F, Roda D, et al. Identification of novel molecular and clinical biomarkers of survival in glioblastoma multiforme patients: a study based on the cancer genome atlas data[J]. BioMed Res Int, 2024, 2024(1): 5582424. DOI: 10.1155/2024/5582424.
[27]
Jeon S, Park C, Kim J, et al. Comparing variants related to chronic diseases from genome-wide association study (GWAS) and the cancer genome atlas (TCGA)[J]. BMC Med Genomics, 2023, 16(1): 332. DOI: 10.1186/s12920-023-01758-7.
[28]
Chen W, Qian W, Nie J, et al. A study of the prognostic value of long non-coding RNA CASC15 in human solid tumors utilizing The Cancer Genome Atlas (TCGA) datasets and a meta-analysis[J]. Clin Exp Med, 2023, 23(1): 65-78. DOI: 10.1007/s10238-021-00789-7.
[29]
Liu D, Augello MA, Grbesa I, et al. Tumor subtype defines distinct pathways of molecular and clinical progression in primary prostate cancer[J]. J Clin Invest, 2021, 131(10): e147878. DOI: 10.1172/JCI147878.
[30]
葛秦涛, 孟佳林, 梁朝朝. 前列腺癌组学分子分型、预后预测及个性化治疗的研究进展[J]. 中华男科学杂志, 2022, 28(9): 837-842. DOI: 10.13263/j.cnki.nja.2022.09.011.
[1] 《乳腺癌新辅助免疫治疗专家共识》专家组. 乳腺癌新辅助免疫治疗专家共识(2025年版)[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(04): 193-197.
[2] 孙圣梅, 习一清, 安宁. 人表皮生长因子受体2阳性型乳腺癌新辅助治疗响应的基因预测模型[J/OL]. 中华普通外科学文献(电子版), 2025, 19(05): 332-339.
[3] 高加勒, 张忠涛. 结直肠癌外科领域最新进展与热点[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 595-599.
[4] 吴少锋, 王茂, 马海龙, 史英, 代引海. 新辅助治疗后肿瘤退缩分级对局部进展期直肠癌患者全直肠系膜切除术效果的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 535-538.
[5] 阳敏, 廖江秀, 章国智, 张晔, 范林军. 常规超声联合临床特征对甲状腺微小乳头状癌中央区淋巴结转移的术前诊断价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(04): 396-400.
[6] 宋小飞, 巫嘉文, 孙阳. 后腹腔镜上尿路手术中良性大体积标本体内分块取出技术的应用研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 720-726.
[7] 陈思鹭, 杨兴, 李学松, 谌诚. 靶向PSMA的荧光探针在前列腺癌显像中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 547-551.
[8] 潘麒文, 何立儒. 前列腺癌放射治疗前沿进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 552-557.
[9] 杨硕, 郭佳. 液体活检在前列腺癌进展监测中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 558-564.
[10] 陈育纯, 王倩倩, 彭天明, 李勇, 田凯文, 刘志烨, 吴坤林, 蒲小勇, 刘久敏. 基于GEO数据库探究前列腺癌淋巴结转移和内脏转移中基因差异及预后[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 579-585.
[11] 余琪伟, 王省博, 姚林亚, 张曦, 吴余凡, 曾学明, 曾庆琪. 经皮胫神经刺激联合索利那新治疗前列腺癌根治术后膀胱功能障碍的疗效观察[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 586-592.
[12] 李玉志, 叶春伟, 杨斌, 杨德林. 机器人辅助下前列腺癌根治术后尿控影响因素的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 658-662.
[13] 李昊, 邰胜, 杨诚, 王宏志, 岳家斌, 孟佳林, 梁朝朝. 国产单孔机器人辅助腹腔镜根治性前列腺切除术的初步应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 565-571.
[14] 杨钰泽, 徐家豪, 杨一石, 王明达, 杨田. 肝细胞癌新辅助治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 515-521.
[15] 王淼, 贺佳佳, 潘颖威, 王小兰, 姚袆, 刘明宝, 陆兮, 苏丽洁. 远端胆管癌术后生存预后及其影响因素分析[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 582-588.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?