| [1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
|
| [2] |
Kawase M, Kato D, Tobisawa Y, et al. Efficacy and safety of combination neoadjuvant chemo-hormonal therapy and robot-assisted radical prostatectomy for oligometastatic prostate cancer[J]. Int J Urol, 2024, 31(7): 826-828. DOI: 10.1111/iju.15448.
|
| [3] |
Zhou E, Zhang B, Zhu K, et al. A TMPRSS2-ERG gene signature predicts prognosis of patients with prostate adenocarcinoma[J]. Clin Transl Med, 2020, 10(8): e216. DOI: 10.1002/ctm2.216.
|
| [4] |
|
| [5] |
Hiremath A, Shiradkar R, Fu P, et al. An integrated nomogram combining deep learning, Prostate Imaging-Reporting and Data System (PI-RADS) scoring, and clinical variables for identification of clinically significant prostate cancer on biparametric MRI: a retrospective multicentre study[J]. Lancet Digit Health, 2021, 3(7): e445-e454. DOI: 10.1016/S2589-7500(21)00082-0.
|
| [6] |
Wang H, Zhang J, Bao S, et al. Preoperative MRI-based radiomic machine-learning nomogram may accurately distinguish between benign and malignant soft-tissue lesions: a two-center study[J]. J Magn Reson Imaging, 2020, 52(3): 873-882. DOI: 10.1002/jmri.27111.
|
| [7] |
Watanabe R, Miura N, Kurata M, et al. Spatial gene expression analysis reveals characteristic gene expression patterns of de novo neuroendocrine prostate cancer coexisting with androgen receptor pathway prostate cancer[J]. Int J Mol Sci, 2023, 24(10): 8955. DOI: 10.3390/ijms24108955.
|
| [8] |
Hardiman G, Savage SJ, Hazard ES, et al. A systems approach to interrogate gene expression patterns in African American men presenting with clinically localized prostate cancer[J]. Cancers (Basel), 2021, 13(20): 5143. DOI: 10.3390/cancers13205143.
|
| [9] |
Meng J, Zhou Y, Lu X, et al. Immune response drives outcomes in prostate cancer: implications for immunotherapy[J]. Mol Oncol, 2021, 15(5): 1358-1375. DOI: 10.1002/1878-0261.12887.
|
| [10] |
Brunese L, Mercaldo F, Reginelli A, et al. Formal methods for prostate cancer Gleason score and treatment prediction using radiomic biomarkers[J]. Magn Reson Imaging, 2020, 66: 165-175. DOI: 10.1016/j.mri.2019.08.030.
|
| [11] |
Culp MB, Soerjomataram I, Efstathiou JA, et al. Recent global patterns in prostate cancer incidence and mortality rates[J]. Eur Urol, 2020, 77(1): 38-52. DOI: 10.1016/j.eururo.2019.08.005.
|
| [12] |
Ma YF, Li GD, Sun X, et al. Identification of FAM107A as a potential biomarker and therapeutic target for prostate carcinoma[J]. Am J Transl Res, 2021, 13(9): 10163-10177.
|
| [13] |
Huang X, Cai W, Yuan W, et al. Identification of key lncRNAs as prognostic prediction models for colorectal cancer based on LASSO[J]. Int J Clin Exp Pathol, 2020, 13(4): 675-684.
|
| [14] |
Jiang J, Bi Y, Liu XP, et al. To construct a CeRNA regulatory network as prognostic biomarkers for bladder cancer[J]. J Cell Mol Med, 2020, 24(9): 5375-5386. DOI: 10.1111/jcmm.15193.
|
| [15] |
Hamm CA, Beetz NL, Savic LJ, et al. Artificial intelligence and radiomics in MRI-based prostate diagnostics[J]. Radiologe, 2020, 60(1): 48-55. DOI: 10.1007/s00117-019-00613-0.
|
| [16] |
|
| [17] |
Ge Q, Xu H, Yue D, et al. Neoadjuvant chemohormonal therapy in prostate cancer before radical prostatectomy: a systematic review and meta-analysis[J]. Front Oncol, 2022, 12: 906370. DOI: 10.3389/fonc.2022.906370.
|
| [18] |
Song Z, Tang Z, Liu H, et al. A clinical-radiomics nomogram may provide a personalized 90-day functional outcome assessment for spontaneous intracerebral hemorrhage[J]. Eur Radiol, 2021, 31(7): 4949-4959. DOI: 10.1007/s00330-021-07828-7.
|
| [19] |
Xie H, Ma S, Wang X, et al. Noncontrast computer tomography-based radiomics model for predicting intracerebral hemorrhage expansion: preliminary findings and comparison with conventional radiological model[J]. Eur Radiol, 2020, 30(1): 87-98. DOI: 10.1007/s00330-019-06378-3.
|
| [20] |
|
| [21] |
|
| [22] |
Narayanan R. Therapeutic targeting of the androgen receptor (AR) and AR variants in prostate cancer[J]. Asian J Urol, 2020, 7(3): 271-283. DOI: 10.1016/j.ajur.2020.03.002.
|
| [23] |
Kim TJ, Lee YH, Koo KC. Current status and future perspectives of androgen receptor inhibition therapy for prostate cancer: a comprehensive review[J]. Biomolecules, 2021, 11(4): 492. DOI: 10.3390/biom11040492.
|
| [24] |
Chi C, Fan L, Dong B, et al. Efficacy of neoadjuvant chemohormonal therapy in oligometastatic hormone-sensitive prostate cancer: a prospective, three-arm, comparative propensity score match analysis[J]. Clin Genitourin Cancer, 2021, 19(4): e223-e234. DOI: 10.1016/j.clgc.2021.02.004.
|
| [25] |
Gómez Rivas J, Ortega Polledo LE, De La Parra Sánchez I, et al. Current status of neoadjuvant treatment before surgery in high-risk localized prostate cancer[J]. Cancers (Basel), 2024, 17(1): 99. DOI: 10.3390/cancers17010099.
|
| [26] |
Esteves L, Caramelo F, Roda D, et al. Identification of novel molecular and clinical biomarkers of survival in glioblastoma multiforme patients: a study based on the cancer genome atlas data[J]. BioMed Res Int, 2024, 2024(1): 5582424. DOI: 10.1155/2024/5582424.
|
| [27] |
Jeon S, Park C, Kim J, et al. Comparing variants related to chronic diseases from genome-wide association study (GWAS) and the cancer genome atlas (TCGA)[J]. BMC Med Genomics, 2023, 16(1): 332. DOI: 10.1186/s12920-023-01758-7.
|
| [28] |
Chen W, Qian W, Nie J, et al. A study of the prognostic value of long non-coding RNA CASC15 in human solid tumors utilizing The Cancer Genome Atlas (TCGA) datasets and a meta-analysis[J]. Clin Exp Med, 2023, 23(1): 65-78. DOI: 10.1007/s10238-021-00789-7.
|
| [29] |
Liu D, Augello MA, Grbesa I, et al. Tumor subtype defines distinct pathways of molecular and clinical progression in primary prostate cancer[J]. J Clin Invest, 2021, 131(10): e147878. DOI: 10.1172/JCI147878.
|
| [30] |
|