| [1] |
Cacciamani GE, Chen A, Gill IS, et al. Artificial intelligence and urology: ethical considerations for urologists and patients[J]. Nat Rev Urol, 2024, 21(1): 50-59. DOI: 10.1038/s41585-023-00796-1.
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
Huang ZH, Liu YY, Wu WJ, et al. Design and validation of a deep learning model for renal stone detection and segmentation on kidney-ureter-bladder images[J]. Bioengineering, 2023, 10(8): 970. DOI: 10.3390/bioengineering10080970.
|
| [6] |
Liu YY, Huang ZH, Huang KW. Deep learning model for computer-aided diagnosis of urolithiasis detection from kidney-ureter-bladder images[J]. Bioengineering, 2022, 9(12): 811. DOI: 10.3390/bioengineering9120811.
|
| [7] |
Sokolovskaya E, Shinde T, Ruchman RB, et al. The effect of faster reporting speed for imaging studies on the number of misses and interpretation errors: a pilot study[J]. J Am Coll Radiol, 2015, 12(7): 683-688. DOI: 10.1016/j.jacr.2015.03.040.
|
| [8] |
Jendeberg J, Thunberg P, Lidén M. Differentiation of distal ureteral stones and pelvic phleboliths using a convolutional neural network[J]. Urolithiasis, 2021, 49(1): 41-49. DOI: 10.1007/s00240-020-01180-z.
|
| [9] |
Mukherjee P, Lee S, Elton DC, et al. Fully automated longitudinal assessment of renal stone burden on serial CT imaging using deep learning[J]. J Endourol, 2023, 37(8): 948-955. DOI: 10.1089/end.2023.0066.
|
| [10] |
Cumpanas AD, Chantaduly C, Morgan KL, et al. Efficient and accurate computed tomography-based stone volume determination: development of an automated artificial intelligence algorithm[J]. J Urol, 2024, 211(2): 256-265. DOI: 10.1097/JU.0000000000003766.
|
| [11] |
Black KM, Law H, Aldoukhi A, et al. Deep learning computer vision algorithm for detecting kidney stone composition[J]. BJU Int, 2020, 125(6): 920-924. DOI: 10.1111/bju.15035.
|
| [12] |
Kim US, Kwon HS, Yang W, et al. Prediction of the composition of urinary stones using deep learning[J]. Investig Clin Urol, 2022, 63(4): 441-447. DOI: 10.4111/icu.20220062.
|
| [13] |
Chew BH, Wong VKF, Halawani A, et al. Development and external validation of a machine learning-based model to classify uric acid stones in patients with kidney stones of Hounsfield units < 800[J]. Urolithiasis, 2023, 51(1): 117. DOI: 10.1007/s00240-023-01490-y.
|
| [14] |
Choi SL, Park SB, Yang S, et al. Detection of ureteral stones in kidney ureter bladder radiography: usefulness of digital post-processing[J]. Curr Med Imaging, 2021, 17(11): 1356-1362. DOI: 10.2174/1573405617666210218094812.
|
| [15] |
Rani G, Thakkar P, Verma A, et al. KUB-UNet: segmentation of organs of urinary system from a KUB X-ray image[J]. Comput Methods Programs Biomed, 2022, 224: 107031. DOI: 10.1016/j.cmpb.2022.107031.
|
| [16] |
Zhang B, Shi H, Wang H. Machine learning and AI in cancer prognosis, prediction, and treatment selection: a critical approach[J]. J Multidiscip Healthc, 2023, 16: 1779-1791. DOI: 10.2147/JMDH.S410301.
|
| [17] |
Choi RY, Coyner AS, Kalpathy-Cramer J, et al. Introduction to machine learning, neural networks, and deep learning[J]. Transl Vis Sci Technol, 2020, 9(2): 14. DOI: 10.1167/tvst.9.2.14.
|
| [18] |
Yang B, Veneziano D, Somani BK. Artificial intelligence in the diagnosis, treatment and prevention of urinary stones[J]. Curr Opin Urol, 2020, 30(6): 782-787. DOI: 10.1097/MOU.0000000000000820.
|
| [19] |
Aminsharifi A, Irani D, Pooyesh S, et al. Artificial neural network system to predict the postoperative outcome of percutaneous nephrolithotomy[J]. J Endourol, 2017, 31(5): 461-467. DOI: 10.1089/end.2016.0791.
|
| [20] |
Haifler M, Kleinmann N, Haramaty R, et al. A machine learning model for predicting surgical intervention in renal colic due to ureteral stone(s) < 5 mm[J]. Sci Rep, 2022, 12: 11788. DOI: 10.1038/s41598-022-16128-z.
|
| [21] |
Rashidi E, Langarizadeh M, Sayadi M, et al. Machine learning models for predicting the type and outcome of ureteral stones treatments[J]. Adv Biomed Res, 2023, 12: 234. DOI: 10.4103/abr.abr_121_23.
|
| [22] |
Alexander Izrailevich N, Boris Alexandrovich N, Artem Vladimirovich E, et al. The use of intelligent analysis (IA) in determining the tactics of treating patients with nephrolithiasis[J]. Urologia, 2023, 90(4): 663-669. DOI: 10.1177/03915603231162881.
|
| [23] |
Zeeshan Hameed BM, Shah M, Naik N, et al. The ascent of artificial intelligence in endourology: a systematic review over the last 2 decades[J]. Curr Urol Rep, 2021, 22(10): 53. DOI: 10.1007/s11934-021-01069-3.
|
| [24] |
Muller S, Abildsnes H, Østvik A, et al. Can a dinosaur think? implementation of artificial intelligence in extracorporeal shock wave lithotripsy[J]. Eur Urol Open Sci, 2021, 27: 33-42. DOI: 10.1016/j.euros.2021.02.007.
|
| [25] |
Fu Z, Jin Z, Zhang C, et al. Visual-electromagnetic system: a novel fusion-based monocular localization, reconstruction, and measurement for flexible ureteroscopy[J]. Int J Med Robot, 2021, 17(4): e2274. DOI: 10.1002/rcs.2274.
|
| [26] |
Hausegger KA, Portugaller HR. Percutaneous nephrostomy and antegrade ureteral stenting: technique-indications-complications[J]. Eur Radiol, 2006, 16(9): 2016-2030. DOI: 10.1007/s00330-005-0136-7.
|
| [27] |
Wang C, Calle P, Tran Ton NB, et al. Deep-learning-aided forward optical coherence tomography endoscope for percutaneous nephrostomy guidance[J]. Biomed Opt Express, 2021, 12(4): 2404-2418. DOI: 10.1364/BOE.421299.
|
| [28] |
Oo MM, Gandhi HR, Chong KT, et al. Automated Needle Targeting with X-ray (ANT-X) - Robot-assisted device for percutaneous nephrolithotomy (PCNL) with its first successful use in human[J]. J Endourol, 2021, 35(6): e919. DOI: 10.1089/end.2018.0003.
|
| [29] |
Calvaresi D, Marinoni M, Dragoni AF, et al. Real-time multi-agent systems for telerehabilitation scenarios[J]. Artif Intell Med, 2019, 96: 217-231. DOI: 10.1016/j.artmed.2019.02.001.
|
| [30] |
Manolitsis I, Feretzakis G, Tzelves L, et al. Sleep quality and urinary incontinence in prostate cancer patients: a data analytics approach with the ASCAPE dataset[J]. Healthcare, 2024, 12(18): 1817. DOI: 10.3390/healthcare12181817.
|
| [31] |
Abraham A, Kavoussi NL, Sui W, et al. Machine learning prediction of kidney stone composition using electronic health record-derived features[J]. J Endourol, 2022, 36(2): 243-250. DOI: 10.1089/end.2021.0211.
|
| [32] |
Sánchez C, Larenas F, Arroyave JS, et al. Artificial intelligence in urology: application of a machine learning model to predict the risk of urolithiasis in a general population[J]. J Endourol, 2024, 38(8): 712-718. DOI: 10.1089/end.2023.0702.
|
| [33] |
Kim ES, Eun SJ, Youn S. The current state of artificial intelligence application in urology[J]. Int Neurourol J, 2023, 27(4): 227-233. DOI: 10.5213/inj.2346336.168.
|
| [34] |
Walter W, Haferlach C, Nadarajah N, et al. How artificial intelligence might disrupt diagnostics in hematology in the near future[J]. Oncogene, 2021, 40(25): 4271-4280. DOI: 10.1038/s41388-021-01861-y.
|
| [35] |
Bellini V, Valente M, Gaddi AV, et al. Artificial intelligence and telemedicine in anesthesia: potential and problems[J]. Minerva Anestesiol, 2022, 88(9): 729-734. DOI: 10.23736/S0375-9393.21.16241-8.
|
| [36] |
Nakayama LF, Zago Ribeiro L, Novaes F, et al. Artificial intelligence for telemedicine diabetic retinopathy screening: a review[J]. Ann Med, 2023, 55(2): 2258149. DOI: 10.1080/07853890.2023.2258149.
|
| [37] |
Asif S, Zhao M, Chen X, et al. StoneNet: an efficient lightweight model based on depthwise separable convolutions for kidney stone detection from CT images[J]. Interdiscip Sci, 2023, 15(4): 633-652. DOI: 10.1007/s12539-023-00578-8.
|
| [38] |
国家卫生健康委员会, 国家发展改革委员会, 工业和信息化部, 等. 关于促进和规范"人工智能+医疗卫生"应用发展的实施意见:国卫办规划发[2025]30号[S]. 2025-10-20.
|
| [39] |
|
| [40] |
Chiruvella V, Guddati AK. Ethical issues in patient data ownership[J]. Interact J Med Res, 2021, 10(2): e22269. DOI: 10.2196/22269.
|
| [41] |
|