切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2026, Vol. 20 ›› Issue (01) : 15 -21. doi: 10.3877/cma.j.issn.1674-3253.2026.01.003

专家论坛

人工智能在泌尿系结石诊治中的应用进展
丁小博, 陈洁, 王艳波()   
  1. 130021 长春,吉林大学第一医院泌尿外科
  • 收稿日期:2025-04-13 出版日期:2026-02-01
  • 通信作者: 王艳波
  • 基金资助:
    吉林省科技厅项目(20250203042SF)

Progress in the application of artificial intelligence in the diagnosis and treatment of urinary calculi

Xiaobo Ding, Jie Chen, Yanbo Wang()   

  1. Department of Urology, First Hospital of Jilin University, Changchun 130021, China
  • Received:2025-04-13 Published:2026-02-01
  • Corresponding author: Yanbo Wang
引用本文:

丁小博, 陈洁, 王艳波. 人工智能在泌尿系结石诊治中的应用进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2026, 20(01): 15-21.

Xiaobo Ding, Jie Chen, Yanbo Wang. Progress in the application of artificial intelligence in the diagnosis and treatment of urinary calculi[J/OL]. Chinese Journal of Endourology(Electronic Edition), 2026, 20(01): 15-21.

近年来,人工智能(AI)在医疗领域的应用进展迅速,AI能够通过强大的数据处理与分析能力,协助医师在诊断、治疗及患者管理中做出更快速、更准确的决策。泌尿系结石是泌尿外科的常见疾病,其引起的绞痛是临床最常见的急症之一,需要给予及时准确的诊断并给出合理的治疗方案。本文就AI在泌尿系结石中的影像诊断、疗效预测、术中辅助、患者管理和监测以及AI面临的挑战几方面进行论述。

In recent years, the application of artificial intelligence (AI) in the medical field has made rapid progress. AI can assist doctors in making faster and more accurate decisions in diagnosis, treatment, and patient management through its powerful data processing and analysis capabilities. Urinary calculi is a common disease in urology, and the colic caused by them is one of the most common emergencies in clinical practice. Timely and accurate diagnosis and reasonable treatment plans are needed. This article elaborates on the imaging diagnosis, efficacy prediction, intraoperative assistance, patient management and monitoring, as well as the challenges faced by AI in urinary calculi.

图1 人工智能在泌尿系结石诊疗中的应用
图2 人工智能技术识别泌尿系结石实现快速诊断
图3 人工智能有助于患者管理和远程监测
[1]
Cacciamani GE, Chen A, Gill IS, et al. Artificial intelligence and urology: ethical considerations for urologists and patients[J]. Nat Rev Urol, 2024, 21(1): 50-59. DOI: 10.1038/s41585-023-00796-1.
[2]
李伟, 宋子健, 赖衍成, 等. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(6): 541-546. DOI: 10.3877/cma.j.issn.1674-3253.2024.06.002.
[3]
Peerapen P, Thongboonkerd V. Kidney stone prevention[J]. Adv Nutr, 2023, 14(3): 555-569. DOI: 10.1016/j.advnut.2023.03.002.
[4]
杨嗣星, 宋超, 廖文彪. 肾结石防治的现状与前景[J]. 重庆医科大学学报, 2024, 49(6): 649-654. DOI: 10.13406/j.cnki.cyxb.003526.
[5]
Huang ZH, Liu YY, Wu WJ, et al. Design and validation of a deep learning model for renal stone detection and segmentation on kidney-ureter-bladder images[J]. Bioengineering, 2023, 10(8): 970. DOI: 10.3390/bioengineering10080970.
[6]
Liu YY, Huang ZH, Huang KW. Deep learning model for computer-aided diagnosis of urolithiasis detection from kidney-ureter-bladder images[J]. Bioengineering, 2022, 9(12): 811. DOI:10.3390/bioengineering9120811.
[7]
Sokolovskaya E, Shinde T, Ruchman RB, et al. The effect of faster reporting speed for imaging studies on the number of misses and interpretation errors: a pilot study[J]. J Am Coll Radiol, 2015, 12(7): 683-688. DOI: 10.1016/j.jacr.2015.03.040.
[8]
Jendeberg J, Thunberg P, Lidén M. Differentiation of distal ureteral stones and pelvic phleboliths using a convolutional neural network[J]. Urolithiasis, 2021, 49(1): 41-49. DOI: 10.1007/s00240-020-01180-z.
[9]
Mukherjee P, Lee S, Elton DC, et al. Fully automated longitudinal assessment of renal stone burden on serial CT imaging using deep learning[J]. J Endourol, 2023, 37(8): 948-955. DOI: 10.1089/end.2023.0066.
[10]
Cumpanas AD, Chantaduly C, Morgan KL, et al. Efficient and accurate computed tomography-based stone volume determination: development of an automated artificial intelligence algorithm[J]. J Urol, 2024, 211(2): 256-265. DOI: 10.1097/JU.0000000000003766.
[11]
Black KM, Law H, Aldoukhi A, et al. Deep learning computer vision algorithm for detecting kidney stone composition[J]. BJU Int, 2020, 125(6): 920-924. DOI: 10.1111/bju.15035.
[12]
Kim US, Kwon HS, Yang W, et al. Prediction of the composition of urinary stones using deep learning[J]. Investig Clin Urol, 2022, 63(4): 441-447. DOI: 10.4111/icu.20220062.
[13]
Chew BH, Wong VKF, Halawani A, et al. Development and external validation of a machine learning-based model to classify uric acid stones in patients with kidney stones of Hounsfield units < 800[J]. Urolithiasis, 2023, 51(1): 117. DOI: 10.1007/s00240-023-01490-y.
[14]
Choi SL, Park SB, Yang S, et al. Detection of ureteral stones in kidney ureter bladder radiography: usefulness of digital post-processing[J]. Curr Med Imaging, 2021, 17(11): 1356-1362. DOI: 10.2174/1573405617666210218094812.
[15]
Rani G, Thakkar P, Verma A, et al. KUB-UNet: segmentation of organs of urinary system from a KUB X-ray image[J]. Comput Methods Programs Biomed, 2022, 224: 107031. DOI: 10.1016/j.cmpb.2022.107031.
[16]
Zhang B, Shi H, Wang H. Machine learning and AI in cancer prognosis, prediction, and treatment selection: a critical approach[J]. J Multidiscip Healthc, 2023, 16: 1779-1791. DOI: 10.2147/JMDH.S410301.
[17]
Choi RY, Coyner AS, Kalpathy-Cramer J, et al. Introduction to machine learning, neural networks, and deep learning[J]. Transl Vis Sci Technol, 2020, 9(2): 14. DOI: 10.1167/tvst.9.2.14.
[18]
Yang B, Veneziano D, Somani BK. Artificial intelligence in the diagnosis, treatment and prevention of urinary stones[J]. Curr Opin Urol, 2020, 30(6): 782-787. DOI: 10.1097/MOU.0000000000000820.
[19]
Aminsharifi A, Irani D, Pooyesh S, et al. Artificial neural network system to predict the postoperative outcome of percutaneous nephrolithotomy[J]. J Endourol, 2017, 31(5): 461-467. DOI: 10.1089/end.2016.0791.
[20]
Haifler M, Kleinmann N, Haramaty R, et al. A machine learning model for predicting surgical intervention in renal colic due to ureteral stone(s) < 5 mm[J]. Sci Rep, 2022, 12: 11788. DOI: 10.1038/s41598-022-16128-z.
[21]
Rashidi E, Langarizadeh M, Sayadi M, et al. Machine learning models for predicting the type and outcome of ureteral stones treatments[J]. Adv Biomed Res, 2023, 12: 234. DOI: 10.4103/abr.abr_121_23.
[22]
Alexander Izrailevich N, Boris Alexandrovich N, Artem Vladimirovich E, et al. The use of intelligent analysis (IA) in determining the tactics of treating patients with nephrolithiasis[J]. Urologia, 2023, 90(4): 663-669. DOI: 10.1177/03915603231162881.
[23]
Zeeshan Hameed BM, Shah M, Naik N, et al. The ascent of artificial intelligence in endourology: a systematic review over the last 2 decades[J]. Curr Urol Rep, 2021, 22(10): 53. DOI: 10.1007/s11934-021-01069-3.
[24]
Muller S, Abildsnes H, Østvik A, et al. Can a dinosaur think? implementation of artificial intelligence in extracorporeal shock wave lithotripsy[J]. Eur Urol Open Sci, 2021, 27: 33-42. DOI: 10.1016/j.euros.2021.02.007.
[25]
Fu Z, Jin Z, Zhang C, et al. Visual-electromagnetic system: a novel fusion-based monocular localization, reconstruction, and measurement for flexible ureteroscopy[J]. Int J Med Robot, 2021, 17(4): e2274. DOI: 10.1002/rcs.2274.
[26]
Hausegger KA, Portugaller HR. Percutaneous nephrostomy and antegrade ureteral stenting: technique-indications-complications[J]. Eur Radiol, 2006, 16(9): 2016-2030. DOI: 10.1007/s00330-005-0136-7.
[27]
Wang C, Calle P, Tran Ton NB, et al. Deep-learning-aided forward optical coherence tomography endoscope for percutaneous nephrostomy guidance[J]. Biomed Opt Express, 2021, 12(4): 2404-2418. DOI: 10.1364/BOE.421299.
[28]
Oo MM, Gandhi HR, Chong KT, et al. Automated Needle Targeting with X-ray (ANT-X) - Robot-assisted device for percutaneous nephrolithotomy (PCNL) with its first successful use in human[J]. J Endourol, 2021, 35(6): e919. DOI: 10.1089/end.2018.0003.
[29]
Calvaresi D, Marinoni M, Dragoni AF, et al. Real-time multi-agent systems for telerehabilitation scenarios[J]. Artif Intell Med, 2019, 96: 217-231. DOI: 10.1016/j.artmed.2019.02.001.
[30]
Manolitsis I, Feretzakis G, Tzelves L, et al. Sleep quality and urinary incontinence in prostate cancer patients: a data analytics approach with the ASCAPE dataset[J]. Healthcare, 2024, 12(18): 1817. DOI: 10.3390/healthcare12181817.
[31]
Abraham A, Kavoussi NL, Sui W, et al. Machine learning prediction of kidney stone composition using electronic health record-derived features[J]. J Endourol, 2022, 36(2): 243-250. DOI: 10.1089/end.2021.0211.
[32]
Sánchez C, Larenas F, Arroyave JS, et al. Artificial intelligence in urology: application of a machine learning model to predict the risk of urolithiasis in a general population[J]. J Endourol, 2024, 38(8): 712-718. DOI: 10.1089/end.2023.0702.
[33]
Kim ES, Eun SJ, Youn S. The current state of artificial intelligence application in urology[J]. Int Neurourol J, 2023, 27(4): 227-233. DOI: 10.5213/inj.2346336.168.
[34]
Walter W, Haferlach C, Nadarajah N, et al. How artificial intelligence might disrupt diagnostics in hematology in the near future[J]. Oncogene, 2021, 40(25): 4271-4280. DOI: 10.1038/s41388-021-01861-y.
[35]
Bellini V, Valente M, Gaddi AV, et al. Artificial intelligence and telemedicine in anesthesia: potential and problems[J]. Minerva Anestesiol, 2022, 88(9): 729-734. DOI: 10.23736/S0375-9393.21.16241-8.
[36]
Nakayama LF, Zago Ribeiro L, Novaes F, et al. Artificial intelligence for telemedicine diabetic retinopathy screening: a review[J]. Ann Med, 2023, 55(2): 2258149. DOI: 10.1080/07853890.2023.2258149.
[37]
Asif S, Zhao M, Chen X, et al. StoneNet: an efficient lightweight model based on depthwise separable convolutions for kidney stone detection from CT images[J]. Interdiscip Sci, 2023, 15(4): 633-652. DOI: 10.1007/s12539-023-00578-8.
[38]
国家卫生健康委员会, 国家发展改革委员会, 工业和信息化部, 等. 关于促进和规范"人工智能+医疗卫生"应用发展的实施意见:国卫办规划发[2025]30号[S]. 2025-10-20.
[39]
滕妍, 王国豫, 王迎春. 通用模型的伦理与治理:挑战及对策[J]. 中国科学院院刊, 2022, 37(9): 1290-1299. DOI: 10.16418/j.issn.1000-3045.20220505003.
[40]
Chiruvella V, Guddati AK. Ethical issues in patient data ownership[J]. Interact J Med Res, 2021, 10(2): e22269. DOI: 10.2196/22269.
[41]
何炼红, 王志雄. 人工智能医疗影像诊断侵权损害赔偿法律问题[J]. 政治与法律, 2020(3): 27-37. DOI: 10.15984/j.cnki.1005-9512.2020.03.003.
[1] 周欣, 梁豪进, 邓振宇, 肖菊花, 周小军. 基于人工智能技术评价江西省孕11~13+6周产前超声筛查质量现状及提出能力提升对策[J/OL]. 中华医学超声杂志(电子版), 2025, 22(09): 850-857.
[2] 张振奇, 齐艺涵, 王璐, 胡紫玥, 李婷婷, 卢漫. 大语言模型DeepSeek-R1在甲状腺超声报告质量控制中的初步应用[J/OL]. 中华医学超声杂志(电子版), 2025, 22(09): 832-837.
[3] 江瑶, 蒋程, 余翔, 谭莹, 温昕, 温慧莹, 彭桂艳, 李胜利. 基于注意力机制改进的子宫解剖结构检测与分割多任务模型的性能评估[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 703-710.
[4] 陈明朗, 许凯, 黄稚熙, 梁博诚, 贺杰, 黄海珊, 马微波, 谭莹, 邹志英, 刘晓棠, 彭桂艳, 陈家希, 钟晓红. MobileNetV4:面向产前超声的主动脉弓分支异常智能诊断研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 711-720.
[5] 杨丽仙, 黄稚熙, 梁博诚, 欧阳淑媛, 陈明朗, 赵英丽, 马薇波, 缪敬, 王磊, 袁鹰. 基于产前时序超声数据的新生儿出生体重智能预测[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 721-732.
[6] 刘晴晴, 俞劲, 徐玮泽, 张志伟, 潘晓华, 舒强, 叶菁菁. OBICnet图像分类模型在小儿先天性心脏病超声筛查中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 754-760.
[7] 傅小芳, 杨青翰, 孙昌琴, 豆梦杰, 胡峻溥, 孙灏, 吕发勤. 基于YOLO 11的肢体长骨骨折断端超声检测模型的临床价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(06): 541-546.
[8] 梅森, 江涛. 人工智能机器学习模型预测关节置换术后效果的进展[J/OL]. 中华关节外科杂志(电子版), 2025, 19(06): 735-741.
[9] 毛俊, 蔡兆伦, 尹晓南, 沈朝勇, 张波. 影像组学预测模型在胃肠间质瘤诊断及预后中的研究进展[J/OL]. 中华普通外科学文献(电子版), 2025, 19(06): 421-425.
[10] 梅昊楠, 杨瑞, 刘修恒. 人工智能辅助病理学图像分析在前列腺癌诊断中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2026, 20(01): 1-7.
[11] 左泽平, 宇洪涛, 朱金海, 钱俊杰, 徐秀民, 王一行, 梁朝朝, 郝宗耀. 智能无线腔镜在超微通道经皮肾镜取石术中的临床应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 736-741.
[12] 刘宝德, 郑娉娉, 肖宇翔, 沈凌, 王柳盛, 张维. 肺泡灌洗液中炎症因子对重症肺炎患者痰栓风险的预测分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(06): 917-922.
[13] 谢钰嵘, 唐流康, 陈明政, 王伟利, 缪文学, 谢峰. 人工智能在肝胆外科临床教学中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 822-827.
[14] 薛怡宁, 兰雅迪, 刘兆宇, 史磊, 赵琪, 许洪伟. 基于图像的人工智能在胃癌中的研究进展[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(06): 670-675.
[15] 常芳媛, 乔春梅, 王欣, 王博冉, 赵梓孚, 李春歌, 王晓磊. 多模态超声及人工智能在细菌性和非细菌性关节炎中应用的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(08): 606-611.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?