切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2026, Vol. 20 ›› Issue (01) : 8 -14. doi: 10.3877/cma.j.issn.1674-3253.2026.01.002

专家论坛

近红外显影技术在前列腺癌淋巴组织显影及病理评估中的应用
蒋钟吉1,2, 郭洪3, 王东文2,()   
  1. 1518055 深圳,南方科技大学医学院
    2518116 深圳,国家癌症中心/国家肿瘤临床医学研究中心,中国医学科学院肿瘤医院深圳医院泌尿外科
    3030001 太原,山西医科大学第一医院泌尿外科
  • 收稿日期:2025-09-30 出版日期:2026-02-01
  • 通信作者: 王东文
  • 基金资助:
    国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院肿瘤医院深圳医院重点项目(SZ2020ZD003); 深圳市"三名工程"医学项目(SZSM202111003)

Application of near-infrared imaging technology in lymphatic mapping and pathological evaluation of prostate cancer

Zhongji Jiang1,2, Hong Guo3, Dongwen Wang2,()   

  1. 1School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
    2Department of Urology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen 518116, China
    3Department of Urology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
  • Received:2025-09-30 Published:2026-02-01
  • Corresponding author: Dongwen Wang
引用本文:

蒋钟吉, 郭洪, 王东文. 近红外显影技术在前列腺癌淋巴组织显影及病理评估中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2026, 20(01): 8-14.

Zhongji Jiang, Hong Guo, Dongwen Wang. Application of near-infrared imaging technology in lymphatic mapping and pathological evaluation of prostate cancer[J/OL]. Chinese Journal of Endourology(Electronic Edition), 2026, 20(01): 8-14.

前列腺癌是全球男性最常见的恶性肿瘤之一,精准评估淋巴结状态和优化手术范围对于改善患者预后至关重要。传统影像学技术在实时引导和微转移病灶检测中灵敏性有限,限制了其在临床中的应用。近红外(NIR)荧光成像技术具有无创性、高灵敏度、深组织穿透性和实时成像等优势,能够显著提升前列腺癌淋巴组织显影及病理诊断的效率。非特异性显影剂如吲哚菁绿(ICG)已在临床广泛应用,但缺乏肿瘤特异性。以前列腺特异性膜抗原(PSMA)为靶标的近红外探针能精准识别癌性淋巴结和微转移病灶,具有术中导航及个体化治疗潜力。这种新兴的靶向与近红外II区(NIR-II)成像技术结合的方法,在实现特异性的基础上更突破了近红外I区(NIR-I)在穿透深度和信噪比方面的限制。结合人工智能(AI)辅助病理分析,有望进一步提高微小病灶识别率,推动前列腺癌精准医疗的发展。

Prostate cancer is one of the most common malignancies among males worldwide. Accurate assessment of lymph node status and optimization of surgical scope are essential for improving patient outcomes. Traditional imaging technologies lack the sensitivity for real-time guidance and micrometastasis detection. Near infrared (NIR) fluorescence imaging provides advantages such as non-invasiveness, high sensitivity, deep tissue penetration, and real-time visualization, which can significantly enhance the efficiency of lymphatic tissue imaging and pathological diagnosis in prostate cancer. While non-specific dyes like indocyanine green (ICG) are widely used, but lack tumor specificity. NIR probes targeting prostate-specific membrane antigen (PSMA) can accurately detect cancerous lymph nodes and micrometastases, supporting surgical navigation and personalized therapy. This emerging approach that integrates targeted strategies with NIR-II imaging not only ensures specificity but also overcomes the limitations of NIR-I in tissue penetration depth and signal-to-noise ratio. When combined with artificial intelligence (AI)-assisted pathological analysis, these advances may enhance the detection of small metastatic lesions and facilitate precision medicine in prostate cancer.

表1 不同分子探针性能对比
[1]
Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024[J]. CA A Cancer J Clinicians, 2024, 74(1): 12-49. DOI: 10.3322/caac.21820.
[2]
Kadeerhan G, Xue B, Wu XL, et al. Incidence trends and survival of metastatic prostate cancer with bone and visceral involvement: 2010-2019 surveillance, epidemiology, and end results[J]. Front Oncol, 2023, 13: 1201753. DOI: 10.3389/fonc.2023.1201753.
[3]
Kadeerhan G, Jiang Z, Guo H, et al. Incidence, mortality, and risk factors of bladder, kidney, prostate and testicular cancers in China and comparisons with the United States, the United Kingdom, Japan, and the Republic of Korea: an up-to-date overview based on the Global Burden of Disease 2021[J]. Exp Hematol Oncol, 2025, 14(1): 103. DOI: 10.1186/s40164-025-00694-9.
[4]
Tintelnot J, Xu Y, Lesker TR, et al. Microbiota-derived 3-IAA influences chemotherapy efficacy in pancreatic cancer[J]. Nature, 2023, 615(7950): 168-174. DOI: 10.1038/s41586-023-05728-y.
[5]
Zhang Y, Liang X, Zhang L, et al. Metabolic characterization and metabolism-score of tumor to predict the prognosis in prostate cancer[J]. Sci Rep, 2021, 11(1): 22486. DOI: 10.1038/s41598-021-01140-6.
[6]
Zhai T, Ma J, Liu Y, et al. The role of cytoreductive radical prostatectomy and lymph node dissection in bone-metastatic prostate cancer: a population-based study[J]. Cancer Med, 2023, 12(16): 16697-16706. DOI: 10.1002/cam4.6292.
[7]
Rahim MK, Okholm TLH, Jones KB, et al. Dynamic CD8+ T cell responses to cancer immunotherapy in human regional lymph nodes are disrupted in metastatic lymph nodes[J]. Cell, 2023, 186(6): 1127-1143.e18. DOI: 10.1016/j.cell.2023.02.021.
[8]
Maxeiner A, Grevendieck A, Pross T, et al. Lymphatic micrometastases predict biochemical recurrence in patients undergoing radical prostatectomy and pelvic lymph node dissection for prostate cancer[J]. Aktuel Urol, 2019, 50(6): 612-618. DOI: 10.1055/a-0856-6545.
[9]
Perera M, Lebdai S, Tin AL, et al. Oncologic outcomes of patients with lymph node invasion at prostatectomy and post-prostatectomy biochemical persistence[J]. Urol Oncol, 2023, 41(2): 105.e19-105.e23. DOI: 10.1016/j.urolonc.2022.10.021.
[10]
Dhar NB, Studer UE. Detection of occult lymph node metastases in locally advanced node-negative prostate cancer[J]. Nat Clin Pract Urol, 2007, 4(10): 520-521. DOI: 10.1038/ncpuro0907.
[11]
Touijer KA, Karnes RJ, Passoni N, et al. Survival outcomes of men with lymph node-positive prostate cancer after radical prostatectomy: a comparative analysis of different postoperative management strategies[J]. Eur Urol, 2018, 73(6): 890-896. DOI: 10.1016/j.eururo.2017.09.027.
[12]
Yu X, Feng Z, Cai Z, et al. Deciphering of cerebrovasculatures via ICG-assisted NIR-II fluorescence microscopy[J]. J Mater Chem B, 2019, 7(42): 6623-6629. DOI: 10.1039/c9tb01381d.
[13]
赵锦丽, 刘光新, 于鹤. 不同部位注射吲哚菁绿示踪下肢淋巴回流通路及子宫旁淋巴回流通路观察[J]. 新乡医学院学报, 2024, 41(3): 262-265. DOI: 10.7683/xxyxyxb.2024.03.012.
[14]
Pathak RA, Hemal AK. Intraoperative ICG-fluorescence imaging for robotic-assisted urologic surgery: current status and review of literature[J]. Int Urol Nephrol, 2019, 51(5): 765-771. DOI: 10.1007/s11255-019-02126-0.
[15]
吴波, 胡操阳, 申彭亮, 等. 荧光显影技术在机器人辅助前列腺癌根治术中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2020, 14(6): 414-419. DOI: 10.3877/cma.j.issn.1674-3253.2020.06.004.
[16]
Chen Z, Huang L, Gao D, et al. High spatiotemporal near-infrared II fluorescence lifetime imaging for quantitative detection of clinical tumor margins[J]. Adv Sci, 2025, 12(5): 2411272. DOI: 10.1002/advs.202411272.
[17]
Yuan Q, Wu G, Xiao SY, et al. Identification and preservation of arm lymphatic system in axillary dissection for breast cancer to reduce arm lymphedema events: a randomized clinical trial[J]. Ann Surg Oncol, 2019, 26(11): 3446-3454. DOI: 10.1245/s10434-019-07569-4.
[18]
Apriyanto DK, Mitrayana, Setiawan A, et al. Therapeutic and contrast agents for photoacoustic imaging-guided photothermal therapy: a narrative review[J]. Nanotheranostics, 2024, 8(4): 506-520. DOI: 10.7150/ntno.96286.
[19]
Hu Z, Fang C, Li B, et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows[J]. Nat Biomed Eng, 2020, 4(3): 259-271. DOI: 10.1038/s41551-019-0494-0.
[20]
廖艳, 成伟. 近红外荧光成像技术在胰腺癌中的应用[J]. 中华肝脏外科手术学电子杂志, 2025, 14(5): 693-699. DOI: 10.3877/cma.j.issn.2095-3232.2025.05.006.
[21]
Wang F, Zhong Y, Bruns O, et al. In vivo NIR-II fluorescence imaging for biology and medicine[J]. Nat Photonics, 2024, 18(6): 535-547. DOI: 10.1038/s41566-024-01391-5.
[22]
Zinn S, Vazquez-Lombardi R, Zimmermann C, et al. Advances in antibody-based therapy in oncology[J]. Nat Cancer, 2023, 4(2): 165-180. DOI: 10.1038/s43018-023-00516-z.
[23]
Pastorino S, Riondato M, Uccelli L, et al. Toward the discovery and development of PSMA targeted inhibitors for nuclear medicine applications[J]. Curr Radiopharm, 2020, 13(1): 63-79. DOI: 10.2174/1874471012666190729151540.
[24]
Barinka C, Hlouchova K, Rovenska M, et al. Structural basis of interactions between human glutamate carboxypeptidase II and its substrate analogs[J]. J Mol Biol, 2008, 376(5): 1438-1450. DOI: 10.1016/j.jmb.2007.12.066.
[25]
Jiang Z, Kadeerhan G, Zhang J, et al. Advances in prostate-specific membrane antigen-targeted theranostics: from radionuclides to near-infrared fluorescence technology[J]. Front Immunol, 2025, 15: 1533532. DOI: 10.3389/fimmu.2024.1533532.
[26]
He Y, Xu W, Xiao YT, et al. Targeting signaling pathways in prostate cancer: mechanisms and clinical trials[J]. Signal Transduct Target Ther, 2022, 7(1): 198. DOI: 10.1038/s41392-022-01042-7.
[27]
Dorff TB, Fanti S, Farolfi A, et al. The evolving role of prostate-specific membrane antigen–based diagnostics and therapeutics in prostate cancer[J]. Am Soc Clin Oncol Educ Book, 2019(39): 321-330. DOI: 10.1200/edbk_239187.
[28]
陈勇明, 刘明. PSMA应用于诊断前列腺癌的研究进展[J]. 现代泌尿生殖肿瘤杂志, 2025, 17(3): 145-148. DOI: 10.3870/j.issn.1674-4624.2025.03.001.
[29]
Doughton JA, Hofman MS, Eu P, et al. A first-in-human study of 68Ga-nanocolloid PET/CT sentinel lymph node imaging in prostate cancer demonstrates aberrant lymphatic drainage pathways[J]. J Nucl Med, 2018, 59(12): 1837-1842. DOI: 10.2967/jnumed.118.209171.
[30]
Sartor O, de Bono J, Chi KN, et al. Lutetium-177–PSMA-617 for metastatic castration-resistant prostate cancer[J]. N Engl J Med, 2021, 385(12): 1091-1103. DOI: 10.1056/nejmoa2107322.
[31]
Hickey JW, Neumann EK, Radtke AJ, et al. Spatial mapping of protein composition and tissue organization: a primer for multiplexed antibody-based imaging[J]. Nat Methods, 2022, 19(3): 284-295. DOI: 10.1038/s41592-021-01316-y.
[32]
Dammes N, Peer D. Monoclonal antibody-based molecular imaging strategies and theranostic opportunities[J]. Theranostics, 2020, 10(2): 938-955. DOI: 10.7150/thno.37443.
[33]
Jiang Z, Zhang J, Jin J, et al. Enhanced NIR-II nanoparticle probe for PSMA-targeted molecular imaging and prostate cancer diagnosis[J]. Int J Nanomedicine, 2025, 20: 9807-9823. DOI: 10.2147/IJN.S532080.
[34]
Kularatne SA, Thomas M, Myers CH, et al. Evaluation of novel prostate-specific membrane antigen-targeted near-infrared imaging agent for fluorescence-guided surgery of prostate cancer[J]. Clin Cancer Res, 2019, 25(1): 177-187. DOI: 10.1158/1078-0432.ccr-18-0803.
[35]
Wu LL, Zhao Q, Wang Q, et al. Membrane dual-targeting probes: a promising strategy for fluorescence-guided prostate cancer surgery and lymph node metastases detection[J]. Acta Pharm Sin B, 2023, 13(3): 1204-1215. DOI: 10.1016/j.apsb.2022.07.018.
[36]
Stibbe JA, de Barros HA, Linders DGJ, et al. First-in-patient study of OTL78 for intraoperative fluorescence imaging of prostate-specific membrane antigen-positive prostate cancer: a single-arm, phase 2a, feasibility trial[J]. Lancet Oncol, 2023, 24(5): 457-467. DOI: 10.1016/S1470-2045(23)00102-X.
[37]
Kelderhouse LE, Chelvam V, Wayua C, et al. Development of tumor-targeted near infrared probes for fluorescence guided surgery[J]. Bioconjug Chem, 2013, 24(6): 1075-1080. DOI: 10.1021/bc400131a.
[38]
Kennedy GT, Azari FS, Bernstein E, et al. A prostate-specific membrane antigen-targeted near-infrared conjugate for identifying pulmonary squamous cell carcinoma during resection[J]. Mol Cancer Ther, 2022, 21(4): 546-554. DOI: 10.1158/1535-7163.MCT-21-0821.
[39]
Wilson ML, Fleming KA, Kuti MA, et al. Access to pathology and laboratory medicine services: a crucial gap[J]. Lancet, 2018, 391(10133): 1927-1938. DOI: 10.1016/S0140-6736(18)30458-6.
[40]
Ström P, Kartasalo K, Olsson H, et al. Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study[J]. Lancet Oncol, 2020, 21(2): 222-232. DOI: 10.1016/S1470-2045(19)30738-7.
[41]
Schilling D, Hennenlotter J, Gakis G, et al. Prospective assessment of histological serial sectioning of pelvic lymph nodes in prostate cancer: a cost-benefit analysis[J]. BJU Int, 2012, 110(6 Pt B): E166-E171. DOI: 10.1111/j.1464-410X.2012.10928.x.
[42]
Li C, Mi J, Wang Y, et al. New and effective EGFR-targeted fluorescence imaging technology for intraoperative rapid determination of lung cancer in freshly isolated tissue[J]. Eur J Nucl Med Mol Imaging, 2023, 50(2): 494-507. DOI: 10.1007/s00259-022-05975-7.
[43]
Zeng F, Li C, Wang H, et al. Intraoperative resection guidance and rapid pathological diagnosis of osteosarcoma using B7H3 targeted probe under NIR-II fluorescence imaging[J]. Adv Sci, 2024, 11(33): 2310167. DOI: 10.1002/advs.202310167.
[44]
Guo X, Li C, Jia X, et al. NIR-II fluorescence imaging-guided colorectal cancer surgery targeting CEACAM5 by a nanobody[J]. EBioMedicine, 2023, 89: 104476. DOI: 10.1016/j.ebiom.2023.104476.
[45]
Derks YHW, Schilham MGM, Rijpkema M, et al. Imaging and photodynamic therapy of prostate cancer using a theranostic PSMA-targeting ligand[J]. Eur J Nucl Med Mol Imaging, 2023, 50(9): 2872-2884. DOI: 10.1007/s00259-023-06224-1.
[46]
Wu S, Hong G, Xu A, et al. Artificial intelligence-based model for lymph node metastases detection on whole slide images in bladder cancer: a retrospective, multicentre, diagnostic study[J]. Lancet Oncol, 2023, 24(4): 360-370. DOI: 10.1016/S1470-2045(23)00061-X.
[47]
Wu S, Wang Y, Hong G, et al. An artificial intelligence model for detecting pathological lymph node metastasis in prostate cancer using whole slide images: a retrospective, multicentre, diagnostic study[J]. EClinicalMedicine, 2024, 71: 102580. DOI: 10.1016/j.eclinm.2024.102580.
[48]
Wu S, Shen R, Hong G, et al. Development and validation of an artificial intelligence-based model for detecting urothelial carcinoma using urine cytology images: a multicentre, diagnostic study with prospective validation[J]. EClinicalMedicine, 2024, 71: 102566. DOI: 10.1016/j.eclinm.2024.102566.
[1] 潘辰蕊, 杨冰洁, 沈会明, 王颖彦, 韩佳豪, 李嘉. 多模态超声联合免疫炎症指标预测乳腺癌腋窝淋巴结转移的价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(10): 969-975.
[2] 王天艺, 李筝, 许锐. 激素受体阳性/HER-2阴性早期乳腺癌的新辅助治疗[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 352-357.
[3] 梅昊楠, 杨瑞, 刘修恒. 人工智能辅助病理学图像分析在前列腺癌诊断中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2026, 20(01): 1-7.
[4] 胡博文, 胡亚兰, 梁辉. 前列腺癌早期筛查的常见方法及最新研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 800-808.
[5] 程必盛, 吴芃. 2025EAU年会要点:微创、远程与精准泌尿外科的发展趋势[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 693-699.
[6] 李瑞芳, 王明帅, 邢念增. 循环肿瘤细胞在膀胱癌诊断和预后中的应用进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 705-713.
[7] 田超, 黄若曦, 蒋茂林, 谢崇伟, 刁鹏飞, 钟苏权, 陈东, 王航涛, 陈桂柳, 陈虞娟, 李国良. 不同亚型前列腺癌新辅助化疗后盆腔淋巴结转移的风险因素及时间分布[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 727-735.
[8] 孟维妮, 管旌旌, 刘敏, 王晓雪, 王海凤. 机器人辅助腹腔镜前列腺根治性切除术后合并多种并发症的护理体会[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 765-771.
[9] 俞颖倩, 徐兴祥. 淋巴结转移与非转移对原发性支气管肺癌免疫微环境及免疫治疗的影响[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(06): 1027-1030.
[10] 郑学真, 雷关芝, 张晓月, 姜一帆, 王兆朋, 王丹丹, 张月英, 周芳, 吴志成. MHC不相合与H-2单倍体相合造血干细胞移植建立急性移植物抗宿主病小鼠模型的研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(06): 329-338.
[11] 黄少坚, 梁汉标, 李清平, 唐善华, 李青妍, 李芷西, 黄灿, 王小振, 陈灿辉, 王恺, 李川江. 基于影像组学和临床特征构建肝癌新辅助/转化治疗后病理学完全缓解预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 860-867.
[12] 杨刚, 黄徐建, 朱建交, 熊永福, 李敬东. 两种不同类型肝门周围胆管癌临床病理特征及生存预后[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 931-938.
[13] 俞若婷, 高威, 刘宇浩, 刘琛. 肺挫伤病理生理机制及相关治疗研究[J/OL]. 中华临床医师杂志(电子版), 2025, 19(07): 536-543.
[14] 王春茂, 韩鸣, 王子彤. 局限期小细胞肺癌新辅助治疗后完全病理学缓解五例[J/OL]. 中华临床医师杂志(电子版), 2025, 19(07): 550-554.
[15] 宁雯琪, 张永利. 脓毒症心肌病的研究进展:基础、临床与展望[J/OL]. 中华临床医师杂志(电子版), 2025, 19(06): 461-466.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?