| [1] |
Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024[J]. CA A Cancer J Clinicians, 2024, 74(1): 12-49. DOI: 10.3322/caac.21820.
|
| [2] |
Kadeerhan G, Xue B, Wu XL, et al. Incidence trends and survival of metastatic prostate cancer with bone and visceral involvement: 2010-2019 surveillance, epidemiology, and end results[J]. Front Oncol, 2023, 13: 1201753. DOI: 10.3389/fonc.2023.1201753.
|
| [3] |
Kadeerhan G, Jiang Z, Guo H, et al. Incidence, mortality, and risk factors of bladder, kidney, prostate and testicular cancers in China and comparisons with the United States, the United Kingdom, Japan, and the Republic of Korea: an up-to-date overview based on the Global Burden of Disease 2021[J]. Exp Hematol Oncol, 2025, 14(1): 103. DOI: 10.1186/s40164-025-00694-9.
|
| [4] |
Tintelnot J, Xu Y, Lesker TR, et al. Microbiota-derived 3-IAA influences chemotherapy efficacy in pancreatic cancer[J]. Nature, 2023, 615(7950): 168-174. DOI: 10.1038/s41586-023-05728-y.
|
| [5] |
Zhang Y, Liang X, Zhang L, et al. Metabolic characterization and metabolism-score of tumor to predict the prognosis in prostate cancer[J]. Sci Rep, 2021, 11(1): 22486. DOI: 10.1038/s41598-021-01140-6.
|
| [6] |
Zhai T, Ma J, Liu Y, et al. The role of cytoreductive radical prostatectomy and lymph node dissection in bone-metastatic prostate cancer: a population-based study[J]. Cancer Med, 2023, 12(16): 16697-16706. DOI: 10.1002/cam4.6292.
|
| [7] |
Rahim MK, Okholm TLH, Jones KB, et al. Dynamic CD8+ T cell responses to cancer immunotherapy in human regional lymph nodes are disrupted in metastatic lymph nodes[J]. Cell, 2023, 186(6): 1127-1143.e18. DOI: 10.1016/j.cell.2023.02.021.
|
| [8] |
Maxeiner A, Grevendieck A, Pross T, et al. Lymphatic micrometastases predict biochemical recurrence in patients undergoing radical prostatectomy and pelvic lymph node dissection for prostate cancer[J]. Aktuel Urol, 2019, 50(6): 612-618. DOI: 10.1055/a-0856-6545.
|
| [9] |
Perera M, Lebdai S, Tin AL, et al. Oncologic outcomes of patients with lymph node invasion at prostatectomy and post-prostatectomy biochemical persistence[J]. Urol Oncol, 2023, 41(2): 105.e19-105.e23. DOI: 10.1016/j.urolonc.2022.10.021.
|
| [10] |
Dhar NB, Studer UE. Detection of occult lymph node metastases in locally advanced node-negative prostate cancer[J]. Nat Clin Pract Urol, 2007, 4(10): 520-521. DOI: 10.1038/ncpuro0907.
|
| [11] |
Touijer KA, Karnes RJ, Passoni N, et al. Survival outcomes of men with lymph node-positive prostate cancer after radical prostatectomy: a comparative analysis of different postoperative management strategies[J]. Eur Urol, 2018, 73(6): 890-896. DOI: 10.1016/j.eururo.2017.09.027.
|
| [12] |
Yu X, Feng Z, Cai Z, et al. Deciphering of cerebrovasculatures via ICG-assisted NIR-II fluorescence microscopy[J]. J Mater Chem B, 2019, 7(42): 6623-6629. DOI: 10.1039/c9tb01381d.
|
| [13] |
|
| [14] |
Pathak RA, Hemal AK. Intraoperative ICG-fluorescence imaging for robotic-assisted urologic surgery: current status and review of literature[J]. Int Urol Nephrol, 2019, 51(5): 765-771. DOI: 10.1007/s11255-019-02126-0.
|
| [15] |
|
| [16] |
Chen Z, Huang L, Gao D, et al. High spatiotemporal near-infrared II fluorescence lifetime imaging for quantitative detection of clinical tumor margins[J]. Adv Sci, 2025, 12(5): 2411272. DOI: 10.1002/advs.202411272.
|
| [17] |
Yuan Q, Wu G, Xiao SY, et al. Identification and preservation of arm lymphatic system in axillary dissection for breast cancer to reduce arm lymphedema events: a randomized clinical trial[J]. Ann Surg Oncol, 2019, 26(11): 3446-3454. DOI: 10.1245/s10434-019-07569-4.
|
| [18] |
Apriyanto DK, Mitrayana, Setiawan A, et al. Therapeutic and contrast agents for photoacoustic imaging-guided photothermal therapy: a narrative review[J]. Nanotheranostics, 2024, 8(4): 506-520. DOI: 10.7150/ntno.96286.
|
| [19] |
Hu Z, Fang C, Li B, et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows[J]. Nat Biomed Eng, 2020, 4(3): 259-271. DOI: 10.1038/s41551-019-0494-0.
|
| [20] |
|
| [21] |
Wang F, Zhong Y, Bruns O, et al. In vivo NIR-II fluorescence imaging for biology and medicine[J]. Nat Photonics, 2024, 18(6): 535-547. DOI: 10.1038/s41566-024-01391-5.
|
| [22] |
Zinn S, Vazquez-Lombardi R, Zimmermann C, et al. Advances in antibody-based therapy in oncology[J]. Nat Cancer, 2023, 4(2): 165-180. DOI: 10.1038/s43018-023-00516-z.
|
| [23] |
Pastorino S, Riondato M, Uccelli L, et al. Toward the discovery and development of PSMA targeted inhibitors for nuclear medicine applications[J]. Curr Radiopharm, 2020, 13(1): 63-79. DOI: 10.2174/1874471012666190729151540.
|
| [24] |
Barinka C, Hlouchova K, Rovenska M, et al. Structural basis of interactions between human glutamate carboxypeptidase II and its substrate analogs[J]. J Mol Biol, 2008, 376(5): 1438-1450. DOI: 10.1016/j.jmb.2007.12.066.
|
| [25] |
Jiang Z, Kadeerhan G, Zhang J, et al. Advances in prostate-specific membrane antigen-targeted theranostics: from radionuclides to near-infrared fluorescence technology[J]. Front Immunol, 2025, 15: 1533532. DOI: 10.3389/fimmu.2024.1533532.
|
| [26] |
He Y, Xu W, Xiao YT, et al. Targeting signaling pathways in prostate cancer: mechanisms and clinical trials[J]. Signal Transduct Target Ther, 2022, 7(1): 198. DOI: 10.1038/s41392-022-01042-7.
|
| [27] |
Dorff TB, Fanti S, Farolfi A, et al. The evolving role of prostate-specific membrane antigen–based diagnostics and therapeutics in prostate cancer[J]. Am Soc Clin Oncol Educ Book, 2019(39): 321-330. DOI: 10.1200/edbk_239187.
|
| [28] |
|
| [29] |
Doughton JA, Hofman MS, Eu P, et al. A first-in-human study of 68Ga-nanocolloid PET/CT sentinel lymph node imaging in prostate cancer demonstrates aberrant lymphatic drainage pathways[J]. J Nucl Med, 2018, 59(12): 1837-1842. DOI: 10.2967/jnumed.118.209171.
|
| [30] |
Sartor O, de Bono J, Chi KN, et al. Lutetium-177–PSMA-617 for metastatic castration-resistant prostate cancer[J]. N Engl J Med, 2021, 385(12): 1091-1103. DOI: 10.1056/nejmoa2107322.
|
| [31] |
Hickey JW, Neumann EK, Radtke AJ, et al. Spatial mapping of protein composition and tissue organization: a primer for multiplexed antibody-based imaging[J]. Nat Methods, 2022, 19(3): 284-295. DOI: 10.1038/s41592-021-01316-y.
|
| [32] |
Dammes N, Peer D. Monoclonal antibody-based molecular imaging strategies and theranostic opportunities[J]. Theranostics, 2020, 10(2): 938-955. DOI: 10.7150/thno.37443.
|
| [33] |
Jiang Z, Zhang J, Jin J, et al. Enhanced NIR-II nanoparticle probe for PSMA-targeted molecular imaging and prostate cancer diagnosis[J]. Int J Nanomedicine, 2025, 20: 9807-9823. DOI: 10.2147/IJN.S532080.
|
| [34] |
Kularatne SA, Thomas M, Myers CH, et al. Evaluation of novel prostate-specific membrane antigen-targeted near-infrared imaging agent for fluorescence-guided surgery of prostate cancer[J]. Clin Cancer Res, 2019, 25(1): 177-187. DOI: 10.1158/1078-0432.ccr-18-0803.
|
| [35] |
Wu LL, Zhao Q, Wang Q, et al. Membrane dual-targeting probes: a promising strategy for fluorescence-guided prostate cancer surgery and lymph node metastases detection[J]. Acta Pharm Sin B, 2023, 13(3): 1204-1215. DOI: 10.1016/j.apsb.2022.07.018.
|
| [36] |
Stibbe JA, de Barros HA, Linders DGJ, et al. First-in-patient study of OTL78 for intraoperative fluorescence imaging of prostate-specific membrane antigen-positive prostate cancer: a single-arm, phase 2a, feasibility trial[J]. Lancet Oncol, 2023, 24(5): 457-467. DOI: 10.1016/S1470-2045(23)00102-X.
|
| [37] |
Kelderhouse LE, Chelvam V, Wayua C, et al. Development of tumor-targeted near infrared probes for fluorescence guided surgery[J]. Bioconjug Chem, 2013, 24(6): 1075-1080. DOI: 10.1021/bc400131a.
|
| [38] |
Kennedy GT, Azari FS, Bernstein E, et al. A prostate-specific membrane antigen-targeted near-infrared conjugate for identifying pulmonary squamous cell carcinoma during resection[J]. Mol Cancer Ther, 2022, 21(4): 546-554. DOI: 10.1158/1535-7163.MCT-21-0821.
|
| [39] |
Wilson ML, Fleming KA, Kuti MA, et al. Access to pathology and laboratory medicine services: a crucial gap[J]. Lancet, 2018, 391(10133): 1927-1938. DOI: 10.1016/S0140-6736(18)30458-6.
|
| [40] |
Ström P, Kartasalo K, Olsson H, et al. Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study[J]. Lancet Oncol, 2020, 21(2): 222-232. DOI: 10.1016/S1470-2045(19)30738-7.
|
| [41] |
Schilling D, Hennenlotter J, Gakis G, et al. Prospective assessment of histological serial sectioning of pelvic lymph nodes in prostate cancer: a cost-benefit analysis[J]. BJU Int, 2012, 110(6 Pt B): E166-E171. DOI: 10.1111/j.1464-410X.2012.10928.x.
|
| [42] |
Li C, Mi J, Wang Y, et al. New and effective EGFR-targeted fluorescence imaging technology for intraoperative rapid determination of lung cancer in freshly isolated tissue[J]. Eur J Nucl Med Mol Imaging, 2023, 50(2): 494-507. DOI: 10.1007/s00259-022-05975-7.
|
| [43] |
Zeng F, Li C, Wang H, et al. Intraoperative resection guidance and rapid pathological diagnosis of osteosarcoma using B7H3 targeted probe under NIR-II fluorescence imaging[J]. Adv Sci, 2024, 11(33): 2310167. DOI: 10.1002/advs.202310167.
|
| [44] |
Guo X, Li C, Jia X, et al. NIR-II fluorescence imaging-guided colorectal cancer surgery targeting CEACAM5 by a nanobody[J]. EBioMedicine, 2023, 89: 104476. DOI: 10.1016/j.ebiom.2023.104476.
|
| [45] |
Derks YHW, Schilham MGM, Rijpkema M, et al. Imaging and photodynamic therapy of prostate cancer using a theranostic PSMA-targeting ligand[J]. Eur J Nucl Med Mol Imaging, 2023, 50(9): 2872-2884. DOI: 10.1007/s00259-023-06224-1.
|
| [46] |
Wu S, Hong G, Xu A, et al. Artificial intelligence-based model for lymph node metastases detection on whole slide images in bladder cancer: a retrospective, multicentre, diagnostic study[J]. Lancet Oncol, 2023, 24(4): 360-370. DOI: 10.1016/S1470-2045(23)00061-X.
|
| [47] |
Wu S, Wang Y, Hong G, et al. An artificial intelligence model for detecting pathological lymph node metastasis in prostate cancer using whole slide images: a retrospective, multicentre, diagnostic study[J]. EClinicalMedicine, 2024, 71: 102580. DOI: 10.1016/j.eclinm.2024.102580.
|
| [48] |
Wu S, Shen R, Hong G, et al. Development and validation of an artificial intelligence-based model for detecting urothelial carcinoma using urine cytology images: a multicentre, diagnostic study with prospective validation[J]. EClinicalMedicine, 2024, 71: 102566. DOI: 10.1016/j.eclinm.2024.102566.
|