[1] |
Gorgoulis V, Adams PD, Alimonti A, et al. Cellular senescence: defining a path forward[J]. Cell, 2019, 179(4): 813-827.
|
[2] |
Watson JA, Watson CJ, McCrohan AM, et al. Generation of an epigenetic signature by chronic hypoxia in prostate cells[J]. Hum Mol Genet, 2009, 18(19): 3594-3604.
|
[3] |
Coppé JP, Patil CK, Rodier F, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor[J]. PLoS Biol, 2008, 6(12): 2853-2868.
|
[4] |
Orjalo AV, Bhaumik D, Gengler BK, et al. Cell surface-bound IL-1alpha is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network[J]. Proc Natl Acad Sci U S A, 2009, 106(40): 17031-17036.
|
[5] |
Mourkioti I, Polyzou A, Veroutis D, et al. A GATA2-CDC6 axis modulates androgen receptor blockade-induced senescence in prostate cancer[J]. J Exp Clin Cancer Res, 2023, 42(1): 187.
|
[6] |
Zamagni A, Zanoni M, Cortesi M, et al. Investigating the benefit of combined androgen modulation and hypofractionation in prostate cancer[J]. Int J Mol Sci, 2020, 21(22): 8447.
|
[7] |
Zhang B, Long Q, Wu S, et al. KDM4 orchestrates epigenomic remodeling of senescent cells and potentiates the senescence-associated secretory phenotype[J]. Nat Aging, 2021, 1(5): 454-472.
|
[8] |
Liu H, Xu Q, Wufuer H, et al. Rutin is a potent senomorphic agent to target senescent cells and can improve chemotherapeutic efficacy[J]. Aging Cell, 2024, 23(1): e13921.
|
[9] |
Laberge RM, Sun Y, Orjalo AV, et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation[J]. Nat Cell Biol, 2015, 17(8): 1049-1061.
|
[10] |
Jerde TJ, Bushman W. IL-1 induces IGF-dependent epithelial proliferation in prostate development and reactive hyperplasia[J]. Sci Signal, 2009, 2(86): ra49.
|
[11] |
Fan YC, Lee KD, Tsai YC. Roles of interleukin-1 receptor antagonist in prostate cancer progression[J]. Biomedicines, 2020, 8(12): 602.
|
[12] |
Giri D, Ozen M, Ittmann M. Interleukin-6 is an autocrine growth factor in human prostate cancer[J]. Am J Pathol, 2001, 159(6): 2159-2165.
|
[13] |
Cocchiola R, Rubini E, Altieri F, et al. STAT3 post-translational modifications drive cellular signaling pathways in prostate cancer cells[J]. Int J Mol Sci, 2019, 20(8): 1815.
|
[14] |
Wegiel B, Bjartell A, Culig Z, et al. Interleukin-6 activates PI3K/Akt pathway and regulates cyclin A1 to promote prostate cancer cell survival[J]. Int J Cancer, 2008, 122(7): 1521-1529.
|
[15] |
Singh RK, Lokeshwar BL. The IL-8-regulated chemokine receptor CXCR7 stimulates EGFR signaling to promote prostate cancer growth[J]. Cancer Res, 2011, 71(9): 3268-3277.
|
[16] |
Cavarretta IT, Neuwirt H, Untergasser G, et al. The antiapoptotic effect of IL-6 autocrine loop in a cellular model of advanced prostate cancer is mediated by Mcl-1[J]. Oncogene, 2007, 26(20): 2822-2832.
|
[17] |
Godoy-Tundidor S, Cavarretta ITR, Fuchs D, et al. Interleukin-6 and oncostatin M stimulation of proliferation of prostate cancer 22Rv1 cells through the signaling pathways of p38 mitogen-activated protein kinase and phosphatidylinositol 3-kinase[J]. Prostate, 2005, 64(2): 209-216.
|
[18] |
Santer FR, Malinowska K, Culig Z, et al. Interleukin-6 trans-signalling differentially regulates proliferation, migration, adhesion and maspin expression in human prostate cancer cells[J]. Endocr Relat Cancer, 2010, 17(1): 241-253.
|
[19] |
Lee SO, Chun JY, Nadiminty N, et al. Interleukin-6 undergoes transition from growth inhibitor associated with neuroendocrine differentiation to stimulator accompanied by androgen receptor activation during LNCaP prostate cancer cell progression[J]. Prostate, 2007, 67(7): 764-773.
|
[20] |
Nowak DG, Cho H, Herzka T, et al. MYC Drives Pten/Trp53-Deficient Proliferation and Metastasis due to IL6 Secretion and AKT Suppression via PHLPP2[J]. Cancer Discov, 2015, 5(6): 636-651.
|
[21] |
Teslow EA, Bao B, Dyson G, et al. Exogenous IL-6 induces mRNA splice variant MBD2_v2 to promote stemness in TP53 wild-type, African American PCa cells[J]. Mol Oncol, 2018, 12(7): 1138-1152.
|
[22] |
Huang S, Liu Q, Liao Q, et al. Interleukin-6/signal transducer and activator of transcription 3 promotes prostate cancer resistance to androgen deprivation therapy via regulating pituitary tumor transforming gene 1 expression[J]. Cancer Sci, 2018, 109(3): 678-687.
|
[23] |
Wilson C, Purcell C, Seaton A, et al. Chemotherapy-induced CXC-chemokine/CXC-chemokine receptor signaling in metastatic prostate cancer cells confers resistance to oxaliplatin through potentiation of nuclear factor-kappaB transcription and evasion of apoptosis[J]. J Pharmacol Exp Ther, 2008, 327(3): 746-759.
|
[24] |
Singh RK, Lokeshwar BL. Depletion of intrinsic expression of Interleukin-8 in prostate cancer cells causes cell cycle arrest, spontaneous apoptosis and increases the efficacy of chemotherapeutic drugs[J]. Mol Cancer, 2009, 8: 57.
|
[25] |
Sun Y, Ai JZ, Jin X, et al. IL-8 protects prostate cancer cells from GSK-3β-induced oxidative stress by activating the mTOR signaling pathway[J]. Prostate, 2019, 79(10): 1180-1190.
|
[26] |
Lee LF, Louie MC, Desai SJ, et al. Interleukin-8 confers androgen-independent growth and migration of LNCaP: differential effects of tyrosine kinases Src and FAK[J]. Oncogene, 2004, 23(12): 2197-2205.
|
[27] |
Zheng T, Ma G, Tang M, et al. IL-8 secreted from M2 macrophages promoted prostate tumorigenesis via STAT3/MALAT1 pathway[J]. Int J Mol Sci, 2018, 20(1): 98.
|
[28] |
Seaton A, Scullin P, Maxwell PJ, et al. Interleukin-8 signaling promotes androgen-independent proliferation of prostate cancer cells via induction of androgen receptor expression and activation[J]. Carcinogenesis, 2008, 29(6): 1148-1156.
|
[29] |
Araki S, Omori Y, Lyn D, et al. Interleukin-8 is a molecular determinant of androgen independence and progression in prostate cancer[J]. Cancer Res, 2007, 67(14): 6854-6862.
|
[30] |
Maynard JP, Ertunc O, Kulac I, et al. IL8 expression is associated with prostate cancer aggressiveness and androgen receptor loss in primary and metastatic prostate cancer[J]. Mol Cancer Res, 2020, 18(1): 153-165.
|
[31] |
Thomas MU, Messex JK, Dang T, et al. Macrophages expedite cell proliferation of prostate intraepithelial neoplasia through their downstream target ERK[J]. FEBS J, 2021, 288(6): 1871-1886.
|
[32] |
Benelli R, Stigliani S, Minghelli S, et al. Impact of CXCL1 overexpression on growth and invasion of prostate cancer cell[J]. Prostate, 2013, 73(9): 941-951.
|
[33] |
Chopra DP, Menard RE, Januszewski J, et al. TNF-alpha-mediated apoptosis in normal human prostate epithelial cells and tumor cell lines[J]. Cancer Lett, 2004, 203(2): 145-154.
|
[34] |
Shukla S, Gupta S. Suppression of constitutive and tumor necrosis factor alpha-induced nuclear factor (NF)-kappaB activation and induction of apoptosis by apigenin in human prostate carcinoma PC-3 cells: correlation with down-regulation of NF-kappaB-responsive genes[J]. Clin Cancer Res, 2004, 10(9): 3169-3178.
|
[35] |
Schröder SK, Asimakopoulou A, Tillmann S, et al. TNF-α controls Lipocalin-2 expression in PC-3 prostate cancer cells[J]. Cytokine, 2020, 135: 155214.
|
[36] |
Mizokami A, Gotoh A, Yamada H, et al. Tumor necrosis factor-alpha represses androgen sensitivity in the LNCaP prostate cancer cell line[J]. J Urol, 2000, 164(3 Pt 1): 800-805.
|
[37] |
Larsson P, Khaja ASS, Semenas J, et al. The functional interlink between AR and MMP9/VEGF signaling axis is mediated through PIP5K1α/pAKT in prostate cancer[J]. Int J Cancer, 2020, 146(6): 1686-1699.
|
[38] |
Ren Z, Kang W, Wang L, et al. E2F1 renders prostate cancer cell resistant to ICAM-1 mediated antitumor immunity by NF-κB modulation[J]. Mol Cancer, 2014, 13: 84.
|
[39] |
Kwon SJ, Lee GT, Lee JH, et al. Mechanism of pro-tumorigenic effect of BMP-6: neovascularization involving tumor-associated macrophages and IL-1a[J]. Prostate, 2014, 74(2): 121-133.
|
[40] |
Ishii K, Sasaki T, Iguchi K, et al. Interleukin-6 induces VEGF secretion from prostate cancer cells in a manner independent of androgen receptor activation[J]. Prostate, 2018, 78(11): 849-856.
|
[41] |
Maxwell PJ, Coulter J, Walker SM, et al. Potentiation of inflammatory CXCL8 signalling sustains cell survival in PTEN-deficient prostate carcinoma[J]. Eur Urol, 2013, 64(2): 177-188.
|
[42] |
Liu Q, Russell MR, Shahriari K, et al. Interleukin-1β promotes skeletal colonization and progression of metastatic prostate cancer cells with neuroendocrine features[J]. Cancer Res, 2013, 73(11): 3297-3305.
|
[43] |
Herroon MK, Diedrich JD, Rajagurubandara E, et al. Prostate tumor cell-derived IL1β induces an inflammatory phenotype in bone marrow adipocytes and reduces sensitivity to docetaxel via lipolysis-dependent mechanisms[J]. Mol Cancer Res, 2019, 17(12): 2508-2521.
|
[44] |
Gu L, Talati P, Vogiatzi P, et al. Pharmacologic suppression of JAK1/2 by JAK1/2 inhibitor AZD1480 potently inhibits IL-6-induced experimental prostate cancer metastases formation[J]. Mol Cancer Ther, 2014, 13(5): 1246-1258.
|
[45] |
Wu CT, Huang YC, Chen WC, et al. Effect of tumor burden on tumor aggressiveness and immune modulation in prostate cancer: association with IL-6 signaling[J]. Cancers, 2019, 11(7): 992.
|
[46] |
Lu Y, Cai Z, Xiao G, et al. Monocyte chemotactic protein-1 mediates prostate cancer-induced bone resorption[J]. Cancer Res, 2007, 67(8): 3646-3653.
|
[47] |
Dahal S, Chaudhary P, Jung YS, et al. Megakaryocyte-derived IL-8 acts as a paracrine factor for prostate cancer aggressiveness through CXCR2 activation and antagonistic AR downregulation[J]. Biomol Ther, 2023, 31(2): 210-218.
|
[48] |
Xu D, McKee CM, Cao Y, et al. Matrix metalloproteinase-9 regulates tumor cell invasion through cleavage of protease nexin-1[J]. Cancer Res, 2010, 70(17): 6988-6998.
|
[49] |
Korbecki J, Bosiacki M, Barczak K, et al. Involvement in tumorigenesis and clinical significance of CXCL1 in reproductive cancers: breast cancer, cervical cancer, endometrial cancer, ovarian cancer and prostate cancer[J]. Int J Mol Sci, 2023, 24(8): 7262.
|
[50] |
Lu Y, Dong B, Xu F, et al. CXCL1-LCN2 paracrine axis promotes progression of prostate cancer via the Src activation and epithelial-mesenchymal transition[J]. Cell Commun Signal, 2019, 17(1): 118.
|
[51] |
Kuo PL, Shen KH, Hung SH, et al. CXCL1/GROα increases cell migration and invasion of prostate cancer by decreasing fibulin-1 expression through NF-κB/HDAC1 epigenetic regulation[J]. Carcinogenesis, 2012, 33(12): 2477-2487.
|
[52] |
Zeng ZZ, Jia Y, Hahn NJ, et al. Role of focal adhesion kinase and phosphatidylinositol 3'-kinase in integrin fibronectin receptor-mediated, matrix metalloproteinase-1-dependent invasion by metastatic prostate cancer cells[J]. Cancer Res, 2006, 66(16): 8091-8099.
|
[53] |
Qu H, Zou Z, Pan Z, et al. IL-7/IL-7 receptor axis stimulates prostate cancer cell invasion and migration via AKT/NF-κB pathway[J]. Int Immunopharmacol, 2016, 40: 203-210.
|
[54] |
Tellman TV, Cruz LA, Grindel BJ, et al. Cleavage of the perlecan-semaphorin 3A-plexin A1-neuropilin-1 (PSPN) complex by matrix metalloproteinase 7/matrilysin triggers prostate cancer cell dyscohesion and migration[J]. Int J Mol Sci, 2021, 22(6): 3218.
|
[55] |
Li W, Xu J, Cheng L, et al. RelB promotes the migration and invasion of prostate cancer DU145 cells via exosomal ICAM1 in vitro[J]. Cell Signal, 2022, 91: 110221.
|
[56] |
Radhakrishnan P, Chachadi V, Lin MF, et al. TNFα enhances the motility and invasiveness of prostatic cancer cells by stimulating the expression of selective glycosyl- and sulfotransferase genes involved in the synthesis of selectin ligands[J]. Biochem Biophys Res Commun, 2011, 409(3): 436-441.
|
[57] |
Wang M, Liu X, Chen Z, et al. Metformin suppressed tumor necrosis factor-α-induced epithelial-mesenchymal transition in prostate cancer by inactivating the NF-κB signaling pathway[J]. Transl Cancer Res, 2020, 9(10): 6086-6095.
|
[58] |
Abdul M, Hoosein N. Differences in the expression and effects of interleukin-1 and-2 on androgen-sensitive and-insensitive human prostate cancer cell lines[J]. Cancer Lett, 2000, 149(1/2): 37-42.
|
[59] |
Thomas-Jardin SE, Kanchwala MS, Jacob J, et al. Identification of an IL-1-induced gene expression pattern in AR+ PCa cells that mimics the molecular phenotype of AR- PCa cells[J]. Prostate, 2018, 78(8): 595-606.
|
[60] |
Thomas-Jardin SE, Dahl H, Kanchwala MS, et al. RELA is sufficient to mediate interleukin-1 repression of androgen receptor expression and activity in an LNCaP disease progression model[J]. Prostate, 2020, 80(2): 133-145.
|
[61] |
DiNatale A, Worrede A, Iqbal W, et al. IL-1β expression driven by androgen receptor absence or inactivation promotes prostate cancer bone metastasis[J]. Cancer Res Commun, 2022, 2(12): 1545-1557.
|
[62] |
Tran LL, Dang T, Thomas R, et al. ELF3 mediates IL-1α induced differentiation of mesenchymal stem cells to inflammatory iCAFs[J]. Stem Cells, 2021, 39(12): 1766-1777.
|
[63] |
Sass SN, Ramsey KD, Egan SM, et al. Tumor-associated myeloid cells promote tumorigenesis of non-tumorigenic human and murine prostatic epithelial cell lines[J]. Cancer Immunol Immunother, 2018, 67(6): 873-883.
|
[64] |
Delk NA, Farach-Carson MC. Interleukin-6: a bone marrow stromal cell paracrine signal that induces neuroendocrine differentiation and modulates autophagy in bone metastatic PCa cells[J]. Autophagy, 2012, 8(4): 650-663.
|
[65] |
Lee GT, Kwon SJ, Lee JH, et al. Macrophages induce neuroendocrine differentiation of prostate cancer cells via BMP6-IL6 Loop[J]. Prostate, 2011, 71(14): 1525-1537.
|
[66] |
Lin LC, Gao AC, Lai CH, et al. Induction of neuroendocrine differentiation in castration resistant prostate cancer cells by adipocyte differentiation-related protein (ADRP) delivered by exosomes[J]. Cancer Lett, 2017, 391: 74-82.
|
[67] |
Weaver EM, Zamora FJ, Hearne JL, et al. Posttranscriptional regulation of T-type Ca(2+) channel expression by interleukin-6 in prostate cancer cells[J]. Cytokine, 2015, 76(2): 309-320.
|
[68] |
Yang L, Wang L, Lin HK, et al. Interleukin-6 differentially regulates androgen receptor transactivation via PI3K-Akt, STAT3, and MAPK, three distinct signal pathways in prostate cancer cells[J]. Biochem Biophys Res Commun, 2003, 305(3): 462-469.
|
[69] |
Natani S, Dhople VM, Parveen A, et al. AMPK/SIRT1 signaling through p38MAPK mediates Interleukin-6 induced neuroendocrine differentiation of LNCaP prostate cancer cells[J]. Biochim Biophys Acta Mol Cell Res, 2021, 1868(10): 119085.
|
[70] |
Huang J, Yao JL, Zhang L, et al. Differential expression of interleukin-8 and its receptors in the neuroendocrine and non-neuroendocrine compartments of prostate cancer[J]. Am J Pathol, 2005, 166(6): 1807-1815.
|
[71] |
Chen H, Sun Y, Wu C, et al. Pathogenesis of prostatic small cell carcinoma involves the inactivation of the P53 pathway[J]. Endocr Relat Cancer, 2012, 19(3): 321-331.
|
[72] |
Peng G, Wang C, Wang H, et al. Gankyrin-mediated interaction between cancer cells and tumor-associated macrophages facilitates prostate cancer progression and androgen deprivation therapy resistance[J]. Oncoimmunology, 2023, 12(1): 2173422.
|
[73] |
Wu CT, Huang YC, Chen WC, et al. Effect of 1α, 25-dihydroxyvitamin D3 on the radiation response in prostate cancer: association with IL-6 signaling[J]. Front Oncol, 2021, 11: 619365.
|
[74] |
Cheteh EH, Sarne V, Ceder S, et al. Interleukin-6 derived from cancer-associated fibroblasts attenuates the p53 response to doxorubicin in prostate cancer cells[J]. Cell Death Discov, 2020, 6: 42.
|
[75] |
Yang F, Yuan C, Wu D, et al. IRE1α expedites the progression of castration-resistant prostate cancers via the positive feedback loop of IRE1α/IL-6/AR[J]. Front Oncol, 2021, 11: 671141.
|
[76] |
Feng S, Tang Q, Sun M, et al. Interleukin-6 increases prostate cancer cells resistance to bicalutamide via TIF2[J]. Mol Cancer Ther, 2009, 8(3): 665-671.
|
[77] |
Maxwell PJ, McKechnie M, Armstrong CW, et al. Attenuating adaptive VEGF-A and IL8 signaling restores durable tumor control in AR antagonist-treated prostate cancers[J]. Mol Cancer Res, 2022, 20(6): 841-853.
|
[78] |
Xia J, Zhang J, Wang L, et al. Non-apoptotic function of caspase-8 confers prostate cancer enzalutamide resistance via NF-κB activation[J]. Cell Death Dis, 2021, 12(9): 833.
|
[79] |
Sasaki T, Yoshikawa Y, Kageyama T, et al. Prostate fibroblasts enhance androgen receptor splice variant 7 expression in prostate cancer cells[J]. Prostate, 2023, 83(4): 364-375.
|
[80] |
Lopez-Bujanda ZA, Haffner MC, Chaimowitz MG, et al. Castration-mediated IL-8 promotes myeloid infiltration and prostate cancer progression[J]. Nat Cancer, 2021, 2(8): 803-818.
|
[81] |
Wang X, Xu F, Kou H, et al. Stromal cell-derived small extracellular vesicles enhance radioresistance of prostate cancer cells via interleukin-8-induced autophagy[J]. J Extracel Vesicles, 2023, 12(7): e12342.
|
[82] |
Prata LGPL, Ovsyannikova IG, Tchkonia T, et al. Senescent cell clearance by the immune system: emerging therapeutic opportunities[J]. Semin Immunol, 2018, 40: 101275.
|
[83] |
Sturmlechner I, Zhang C, Sine CC, et al. p21 produces a bioactive secretome that places stressed cells under immunosurveillance[J]. Science, 2021, 374(6567): eabb3420.
|
[84] |
Wang C, Zhang Y, Gao WQ. The evolving role of immune cells in prostate cancer[J]. Cancer Lett, 2022, 525: 9-21.
|
[85] |
Michelini S, Sarajlic M, Duschl A, et al. IL-1β induces expression of costimulatory molecules and cytokines but not immune feedback regulators in dendritic cells[J]. Hum Immunol, 2018, 79(8): 610-615.
|
[86] |
Maliszewski CR, Sato TA, Vanden Bos T, et al. Cytokine receptors and B cell functions. I. Recombinant soluble receptors specifically inhibit IL-1- and IL-4-induced B cell activities in vitro[J]. J Immunol, 1990, 144(8): 3028-3033.
|
[87] |
Wang JG, Williams JC, Davis BK, et al. Monocytic microparticles activate endothelial cells in an IL-1β-dependent manner[J]. Blood, 2011, 118(8): 2366-2374.
|
[88] |
Wang D, Cheng C, Chen X, et al. IL-1β is an androgen-responsive target in macrophages for immunotherapy of prostate cancer[J]. Adv Sci, 2023, 10(17): e2206889.
|
[89] |
McLoughlin RM, Jenkins BJ, Grail D, et al. IL-6 trans-signaling via STAT3 directs T cell infiltration in acute inflammation[J]. Proc Natl Acad Sci U S A, 2005, 102(27): 9589-9594.
|
[90] |
Dienz O, Rincon M. The effects of IL-6 on CD4 T cell responses[J]. Clin Immunol, 2009, 130(1): 27-33.
|
[91] |
Levy Y, Fermand JP, Brouet JC. Differential effects of low and high concentrations of interleukin 6 on human B cells[J]. Eur J Immunol, 1990, 20(11): 2389-2393.
|
[92] |
Dienz O, Eaton SM, Bond JP, et al. The induction of antibody production by IL-6 is indirectly mediated by IL-21 produced by CD4+ T cells[J]. J Exp Med, 2009, 206(1): 69-78.
|
[93] |
Han IH, Song HO, Ryu JS. IL-6 produced by prostate epithelial cells stimulated with Trichomonas vaginalispromotes proliferation of prostate cancer cells by inducing M2 polarization of THP-1-derived macrophages[J]. PLoS Negl Trop Dis, 2020, 14(3): e0008126.
|
[94] |
Kim JJ, Nottingham LK, Sin JI, et al. CD8 positive T cells influence antigen-specific immune responses through the expression of chemokines[J]. J Clin Invest, 1998, 102(6): 1112-1124.
|
[95] |
Kehrl JH, Miller A, Fauci AS. Effect of tumor necrosis factor alpha on mitogen-activated human B cells[J]. J Exp Med, 1987, 166(3): 786-791.
|
[96] |
Rieckmann P, Tuscano JM, Kehrl JH. Tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) in B-lymphocyte function[J]. Methods, 1997, 11(1): 128-132.
|
[97] |
Lee J, Lee SH, Shin N, et al. Tumor necrosis factor-alpha enhances IL-15-induced natural killer cell differentiation[J]. Biochem Biophys Res Commun, 2009, 386(4): 718-723.
|
[98] |
Almishri W, Santodomingo-Garzon T, Le T, et al. TNFα augments cytokine-induced NK cell IFNγ production through TNFR2[J]. J Innate Immun, 2016, 8(6): 617-629.
|
[99] |
Kratochvill F, Neale G, Haverkamp JM, et al. TNF counterbalances the emergence of M2 tumor macrophages[J]. Cell Rep, 2015, 12(11): 1902-1914.
|
[100] |
Weber R, Groth C, Lasser S, et al. IL-6 as a major regulator of MDSC activity and possible target for cancer immunotherapy[J]. Cell Immunol, 2021, 359: 104254.
|
[101] |
Alfaro C, Teijeira A, Oñate C, et al. Tumor-produced interleukin-8 attracts human myeloid-derived suppressor cells and elicits extrusion of neutrophil extracellular traps (NETs)[J]. Clin Cancer Res, 2016, 22(15): 3924-3936.
|
[102] |
Shi H, Han X, Sun Y, et al. Chemokine (C-X-C motif) ligand 1 and CXCL2 produced by tumor promote the generation of monocytic myeloid-derived suppressor cells[J]. Cancer Sci, 2018, 109(12): 3826-3839.
|
[103] |
Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria[J]. Science, 2004, 303(5663): 1532-1535.
|
[104] |
Cools-Lartigue J, Spicer J, McDonald B, et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis[J]. J Clin Invest, 2013, 123(8): 3446-3458.
|
[105] |
Teijeira á, Garasa S, Gato M, et al. CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity[J]. Immunity, 2020, 52(5): 856-871.e8.
|
[106] |
Liu Y, Liu L. The pro-tumor effect and the anti-tumor effect of neutrophils extracellular traps[J]. Biosci Trends, 2020, 13(6): 469-475.
|
[107] |
Feijoó E, Alfaro C, Mazzolini G, et al. Dendritic cells delivered inside human carcinomas are sequestered by interleukin-8[J]. Int J Cancer, 2005, 116(2): 275-281.
|
[108] |
Shahriari K, Shen F, Worrede-Mahdi A, et al. Cooperation among heterogeneous prostate cancer cells in the bone metastatic niche[J]. Oncogene, 2017, 36(20): 2846-2856.
|
[109] |
Chen Y, Li R, Shang S, et al. Therapeutic potential of TNFα and IL1β blockade for CRS/ICANS in CAR-T therapy via ameliorating endothelial activation[J]. Front Immunol, 2021, 12: 623610.
|
[110] |
Karkera J, Steiner H, Li W, et al. The anti-interleukin-6 antibody siltuximab down-regulates genes implicated in tumorigenesis in prostate cancer patients from a phase I study[J]. Prostate, 2011, 71(13): 1455-1465.
|
[111] |
Fizazi K, de Bono JS, Flechon A, et al. Randomised phase II study of siltuximab (CNTO 328), an anti-IL-6 monoclonal antibody, in combination with mitoxantrone/prednisone versus mitoxantrone/prednisone alone in metastatic castration-resistant prostate cancer[J]. Eur J Cancer, 2012, 48(1): 85-93.
|
[112] |
Jiang Z, Liao R, Lv J, et al. IL-6 trans-signaling promotes the expansion and anti-tumor activity of CAR T cells[J]. Leukemia, 2021, 35(5): 1380-1391.
|
[113] |
Bilusic M, Heery CR, Collins JM, et al. Phase I trial of HuMax-IL8 (BMS-986253), an anti-IL-8 monoclonal antibody, in patients with metastatic or unresectable solid tumors[J]. J Immunother Cancer, 2019, 7(1): 240.
|
[114] |
Di Mitri D, Mirenda M, Vasilevska J, et al. Re-education of tumor-associated macrophages by CXCR2 blockade drives senescence and tumor inhibition in advanced prostate cancer[J]. Cell Rep, 2019, 28(8): 2156-2168.e5.
|
[115] |
Guo C, Sharp A, Gurel B, et al. Targeting myeloid chemotaxis to reverse prostate cancer therapy resistance[J]. Nature, 2023, 623(7989): 1053-1061.
|
[116] |
Jin L, Tao H, Karachi A, et al. CXCR1- or CXCR2-modified CAR T cells co-opt IL-8 for maximal antitumor efficacy in solid tumors[J]. Nat Commun, 2019, 10(1): 4016.
|
[117] |
Méndez-Clemente A, Bravo-Cuellar A, González-Ochoa S, et al. Dual STAT-3 and IL-6R inhibition with stattic and tocilizumab decreases migration, invasion and proliferation of prostate cancer cells by targeting the IL-6/IL-6R/STAT-3 axis[J]. Oncol Rep, 2022, 48(2): 138.
|
[118] |
González-Ochoa S, Tellez-Bañuelos MC, Méndez-Clemente AS, et al. Combination blockade of the IL6R/STAT-3 axis with TIGIT and its impact on the functional activity of NK cells against prostate cancer cells[J]. J Immunol Res, 2022, 2022: 1810804.
|
[119] |
Witt K, Evans-Axelsson S, Lundqvist A, et al. Inhibition of STAT3 augments antitumor efficacy of anti-CTLA-4 treatment against prostate cancer[J]. Cancer Immunol Immunother, 2021, 70(11): 3155-3166.
|
[120] |
Chien Y, Scuoppo C, Wang X, et al. Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity[J]. Genes Dev, 2011, 25(20): 2125-2136.
|
[121] |
Liu Y, Hawkins OE, Su Y, et al. Targeting aurora kinases limits tumour growth through DNA damage-mediated senescence and blockade of NF-κB impairs this drug-induced senescence[J]. EMBO Mol Med, 2013, 5(1): 149-166.
|
[122] |
Wang Z, Li Y, Wu D, et al. Nuclear receptor HNF4α performs a tumor suppressor function in prostate cancer via its induction of p21-driven cellular senescence[J]. Oncogene, 2020, 39(7): 1572-1589.
|
[123] |
Ramalho-Carvalho J, Graça I, Gomez A, et al. Downregulation of miR-130b~301b cluster is mediated by aberrant promoter methylation and impairs cellular senescence in prostate cancer[J]. J Hematol Oncol, 2017, 10(1): 43.
|
[124] |
Paul PJ, Raghu D, Chan AL, et al. Restoration of tumor suppression in prostate cancer by targeting the E3 ligase E6AP[J]. Oncogene, 2016, 35(48): 6235-6245.
|
[125] |
Alessio N, Aprile D, Squillaro T, et al. The senescence-associated secretory phenotype (SASP) from mesenchymal stromal cells impairs growth of immortalized prostate cells but has no effect on metastatic prostatic cancer cells[J]. Aging, 2019, 11(15): 5817-5828.
|