[1] |
Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA, 2016, 315(8): 801-810. DOI: 10.1001/jama.2016.0287.
|
[2] |
Peerapornratana S, Manrique-Caballero CL, Gómez H, et al. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment[J]. Kidney Int, 2019, 96(5): 1083-1099. DOI: 10.1016/j.kint.2019.05.026.
|
[3] |
Tang D, Wang H, Billiar TR, et al. Emerging mechanisms of immunocoagulation in sepsis and septic shock[J]. Trends Immunol, 2021, 42(6): 508-522. DOI: 10.1016/j.it.2021.04.001.
|
[4] |
|
[5] |
Volmari A, Foelsch K, Zierz E, et al. Leukocyte-derived high-mobility group box 1 governs hepatic immune responses to Listeria monocytogenes[J]. Hepatol Commun, 2021, 5(12): 2104-2120. DOI: 10.1002/hep4.1777.
|
[6] |
Rodrigues AT, Rodrigues JT, Rodrigues CT, et al. Association between thrombomodulin and high mobility group box 1 in sepsis patients[J]. World J Crit Care Med, 2020, 9(4): 63-73. DOI: 10.5492/wjccm.v9.i4.63.
|
[7] |
Cai J, Lin Z. Correlation of blood high mobility group box-1 protein with mortality of patients with sepsis: a meta-analysis[J]. Heart Lung, 2021, 50(6): 885-892. DOI: 10.1016/j.hrtlng.2021.07.010.
|
[8] |
Ren C, Yao RQ, Wang LX, et al. Antagonism of cerebral high mobility group box 1 ameliorates dendritic cell dysfunction in sepsis[J]. Front Pharmacol, 2021, 12: 665579. DOI: 10.3389/fphar.2021.665579.
|
[9] |
Fang J, Ge X, Xu W, et al. Bioinformatics analysis of the prognosis and biological significance of HMGB1, HMGB2, and HMGB3 in gastric cancer[J]. J Cell Physiol, 2020, 235(4): 3438-3446. DOI: 10.1002/jcp.29233.
|
[10] |
Ye Z, Jia J, Lv Z, et al. Identification of high-mobility group box 1 (HMGB1) expression as a potential predictor of rejection and poor prognosis after liver transplantation[J]. Ann Transplant, 2021, 26: e931625. DOI: 10.12659/AOT.931625.
|
[11] |
Zhao H, Zhao M, Wang Y, et al. Glycyrrhizic acid attenuates sepsis-induced acute kidney injury by inhibiting NF-κB signaling pathway[J]. Evid Based Complement Alternat Med, 2016, 2016: 8219287. DOI: 10.1155/2016/8219287.
|
[12] |
Zhao F, Fang Y, Deng S, et al. Glycyrrhizin protects rats from sepsis by blocking HMGB1 signaling[J]. Biomed Res Int, 2017, 2017: 9719647. DOI: 10.1155/2017/9719647.
|
[13] |
|
[14] |
Oh H, Choi A, Seo N, et al. Protective effect of glycyrrhizin, a direct HMGB1 inhibitor, on post-contrast acute kidney injury[J]. Sci Rep, 2021, 11(1): 15625. DOI: 10.1038/s41598-021-94928-5.
|
[15] |
|
[16] |
|
[17] |
|
[18] |
Zhang X, Su C, Zhao S, et al. Combination therapy of Ulinastatin with Thrombomodulin alleviates endotoxin (LPS) - induced liver and kidney injury via inhibiting apoptosis, oxidative stress and HMGB1/TLR4/NF-κB pathway[J]. Bioengineered, 2022, 13(2): 2951-2970. DOI: 10.1080/21655979.2021.2024686.
|
[19] |
Fowler AA 3rd, Truwit JD, Duncan Hite R, et al. Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: the CITRIS-ALI randomized clinical trial[J]. JAMA, 2019, 322(13): 1261-1270. DOI: 10.1001/jama.2019.11825.
|
[20] |
Matics TJ, Nelson Sanchez-Pinto L. Adaptation and validation of a pediatric sequential organ failure assessment score and evaluation of the sepsis-3 definitions in critically ill children[J]. JAMA Pediatr, 2017, 171(10): e172352. DOI: 10.1001/jamapediatrics.2017.2352.
|
[21] |
Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study[J]. Lancet, 2020, 395(10219): 200-211. DOI: 10.1016/S0140-6736(19)32989-7.
|
[22] |
He FF, Wang YM, Chen YY, et al. Sepsis-induced AKI: from pathogenesis to therapeutic approaches[J]. Front Pharmacol, 2022, 13: 981578. DOI: 10.3389/fphar.2022.981578.
|
[23] |
Zang D, Li W, Cheng F, et al. Accuracy and sensitivity of high mobility group box 1 (HMGB1) in diagnosis of acute kidney injury caused by sepsis and relevance to prognosis[J]. Clin Chim Acta, 2022, 535: 61-67. DOI: 10.1016/j.cca.2022.07.015.
|
[24] |
Anderberg SB, Luther T, Frithiof R. Physiological aspects of Toll-like receptor 4 activation in sepsis-induced acute kidney injury[J]. Acta Physiol (Oxf), 2017, 219(3): 573-588. DOI: 10.1111/apha.12798.
|
[25] |
|
[26] |
Zhang J, Xia J, Zhang Y, et al. HMGB1-TLR4 signaling participates in renal ischemia reperfusion injury and could be attenuated by dexamethasone-mediated inhibition of the ERK/NF-κB pathway[J]. Am J Transl Res, 2016, 8(10): 4054-4067.
|
[27] |
Hwang JS, Choi HS, Ham SA, et al. Deacetylation-mediated interaction of SIRT1-HMGB1 improves survival in a mouse model of endotoxemia[J]. Sci Rep, 2015, 5: 15971. DOI: 10.1038/srep15971.
|
[28] |
Yamashiro K, Ideguchi H, Aoyagi H, et al. High mobility group box 1 expression in oral inflammation and regeneration[J]. Front Immunol, 2020, 11: 1461. DOI: 10.3389/fimmu.2020.01461.
|
[29] |
Deng C, Zhao L, Yang Z, et al. Targeting HMGB1 for the treatment of sepsis and sepsis-induced organ injury[J]. Acta Pharmacol Sin, 2022, 43(3): 520-528. DOI: 10.1038/s41401-021-00676-7.
|
[30] |
Zheng S, Pan Y, Wang C, et al. HMGB1 turns renal tubular epithelial cells into inflammatory promoters by interacting with TLR4 during sepsis[J]. J Interferon Cytokine Res, 2016, 36(1): 9-19. DOI: 10.1089/jir.2015.0067.
|
[31] |
Sinha P, Matthay MA, Calfee CS. Is a "cytokine storm" relevant to COVID-19?[J]. JAMA Intern Med, 2020, 180(9): 1152-1154. DOI: 10.1001/jamainternmed.2020.3313.
|
[32] |
Cavone L, Muzzi M, Mencucci R, et al. 18β-glycyrrhetic acid inhibits immune activation triggered by HMGB1, a pro-inflammatory protein found in the tear fluid during conjunctivitis and blepharitis[J]. Ocul Immunol Inflamm, 2011, 19(3): 180-185. DOI: 10.3109/09273948.2010.538121.
|
[33] |
Richard SA, Jiang Y, Xiang LH, et al. Post-translational modifications of high mobility group box 1 and cancer[J]. Am J Transl Res, 2017, 9(12): 5181-5196.
|
[34] |
Gao Z, Lu L, Chen X. Release of HMGB1 in podocytes exacerbates lipopolysaccharide-induced acute kidney injury[J]. Mediators Inflamm, 2021, 2021: 5220226. DOI: 10.1155/2021/5220226.
|
[35] |
Wu Y, Chen W, Zhang Y, et al. Potent therapy and transcriptional profile of combined erythropoietin-derived peptide cyclic helix B surface peptide and caspase-3 siRNA against kidney ischemia/reperfusion injury in mice[J]. J Pharmacol Exp Ther, 2020, 375(1): 92-103. DOI: 10.1124/jpet.120.000092.
|
[36] |
Xu HP, Ma XY, Yang C. Circular RNA TLK1 promotes sepsis-associated acute kidney injury by regulating inflammation and oxidative stress through miR-106a-5p/HMGB1 axis[J]. Front Mol Biosci, 2021, 8: 660269. DOI: 10.3389/fmolb.2021.660269.
|
[37] |
Yang WS, Han NJ, Kim JJ, et al. TNF-α activates high-mobility group box 1 - toll-like receptor 4 signaling pathway in human aortic endothelial cells[J]. Cell Physiol Biochem, 2016, 38(6): 2139-2151. DOI: 10.1159/000445570.
|
[38] |
Chen L, Lu Q, Deng F, et al. miR-103a-3p could attenuate sepsis-induced liver injury by targeting HMGB1[J]. Inflammation, 2020, 43(6): 2075-2086. DOI: 10.1007/s10753-020-01275-0.
|
[39] |
Li ZL, Gao M, Yang MS, et al. Sesamin attenuates intestinal injury in sepsis via the HMGB1/TLR4/IL-33 signalling pathway[J]. Pharm Biol, 2020, 58(1): 898-904. DOI: 10.1080/13880209.2020.1787469.
|
[40] |
Li L, Lu YQ. The regulatory role of high-mobility group protein 1 in sepsis-related immunity[J]. Front Immunol, 2021, 11: 601815. DOI: 10.3389/fimmu.2020.601815.
|
[41] |
Manthiram K, Zhou Q, Aksentijevich I, et al. The monogenic autoinflammatory diseases define new pathways in human innate immunity and inflammation[J]. Nat Immunol, 2017, 18(8): 832-842. DOI: 10.1038/ni.3777.
|
[42] |
Zhang P, Xin X, Fang L, et al. HMGB1 mediates Aspergillus fumigatus-induced inflammatory response in alveolar macrophages of COPD mice via activating MyD88/NF-κB and syk/PI3K signalings[J]. Int Immunopharmacol, 2017, 53: 125-132. DOI: 10.1016/j.intimp.2017.10.007.
|
[43] |
Tao H, Li N, Zhang Z, et al. Erlotinib protects LPS-induced acute lung injury in mice by inhibiting EGFR/TLR4 signaling pathway[J]. Shock, 2019, 51(1): 131-138. DOI: 10.1097/SHK.0000000000001124.
|