[1] |
Guallar-Bouloc M, Gomez-Bueno P, Gonzalez-Sanchez M, et al. Spanish questionnaires for the assessment of pelvic floor dysfunctions in women: a systematic review of the structur-al characteristics and psychometric properties[J]. Int J Environ Res Public Health, 2021, 18(23): 12858.
|
[2] |
陶乃菊,陆欢,陈芸. 产后盆底功能障碍性疾病的危险因素及风险模型构建[J]. 中国妇幼保健, 2022, 37(18): 3417-3420.
|
[3] |
Lipschuetz M, Cohen SM, Liebergall-Wischnitzer M, et al. Degree of bother from pelvic floor dysfunction in women one year after first delivery[J]. Eur J Obstet Gynecol Reprod Biol, 2015, 191: 90-94.
|
[4] |
郑璇,赵云. 孕期与产后盆底功能障碍性疾病及防治研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2022, 18(3): 366-372.
|
[5] |
葛均波. 未来已来——人工智能的医学应用[J]. 生命科学, 2022, 34(8): 907-908.
|
[6] |
Lawrence DR, Palacios-González C, Harris J. Artificial intelligence[J]. Camb Q Healthc Ethics, 2016, 25(2): 250-261.
|
[7] |
Fan M. Application analysis of artificial intelligence in computer technology[J]. The Fron-tiers of Society, Science and Technology, 2020, 2(16): 131-136.
|
[8] |
Bhinder B, Gilvary C, Madhukar NS, et al. Artificial intelligence in cancer research and precision medicine[J]. Cancer Discov, 2021, 11(4): 900-915.
|
[9] |
王璟琛,柴军. 基于深度学习的人工智能在肺结节检测领域的研究进展[J]. 内蒙古医学杂志, 2022, 54(8): 951-954.
|
[10] |
Sahiner B, Pezeshk A, Hadjiiski LM, et al. Deep learning in medical imaging and radiation therapy[J]. Med Phys, 2019, 46(1): e1-e36.
|
[11] |
余浩佳. 基于无监督聚类算法的脓毒症患者输注红细胞策略研究[D]. 大连医科大学, 2022.
|
[12] |
曹绮雯,王春晖,万杰君,等. 基于EasyDL开发糖尿病眼底病变人工智能分级诊断模型及其验证评价[J]. 新医学, 2022, 53(5): 361-365.
|
[13] |
王元毅,曾凯,郝雨,等. 南疆地区女性压力性尿失禁的预测模型构建[J]. 现代泌尿外科杂志, 2021, 26(9): 735-739.
|
[14] |
Benitez-Andrades JA, Garcia-Ordas MT, Alvarez-Gonzalez M, et al. Detection of the most influential variables for preventing postpartum urinary incontinence using machine learning techniques[J]. Digit Health, 2022, 8: 579755001.
|
[15] |
李炳臻,刘克,顾佼佼,等. 卷积神经网络研究综述[J]. 计算机时代, 2021(4): 8-12.
|
[16] |
Huang YL, Chen HY. Computer-aided diagnosis of urodynamic stress incontinence with vector-based perineal ultrasound using neural networks[J]. Ultrasound Obstet Gynecol, 2007, 30(7): 1002-1006.
|
[17] |
Yin P, Wang H. Evaluation of nursing effect of pelvic floor rehabilitation training on pelvic organ prolapse in postpartum pregnant women under ultrasound imaging with artificial in-telligence algorithm[J]. Comput Math Methods Med, 2022, 2022: 1786994.
|
[18] |
Wang X, He D, Feng F, et al. Multi-label classification of pelvic organ prolapse using stress magnetic resonance imaging with deep learning[J]. Int Urogynecol J, 2022, 33(10): 2869-2877.
|
[19] |
Feng F, Ashton-Miller JA, DeLancey J, et al. Feasibility of a deep learning-based method for automated localization of pelvic floor landmarks using stress MR images[J]. Int Uro-gynecol J, 2021, 32(11): 3069-3075.
|
[20] |
Feng F, Ashton-Miller JA, DeLancey J, et al. Convolutional neural network-based pelvic floor structure segmentation using magnetic resonance imaging in pelvic organ prolapse[J]. Med Phys, 2020, 47(9): 4281-4293.
|
[21] |
Chan HP, Samala RK, Hadjiiski LM, et al. Deep learning in medical image analysis[J]. Adv Exp Med Biol, 2020, 1213: 3-21.
|
[22] |
Lundervold AS, Lundervold A. An overview of deep learning in medical imaging focusing on MRI[J]. Z Med Phys, 2019, 29(2): 102-127.
|
[23] |
Zhang M, Lin X, Zheng Z, et al. Artificial intelligence models derived from 2D transperineal ultrasound images in the clinical diagnosis of stress urinary incontinence[J]. Int Urogynecol J, 2022, 33(5): 1179-1185.
|
[24] |
Cikes M, Sanchez-Martinez S, Claggett B, et al. Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy[J]. Eur J Heart Fail, 2019, 21(1): 74-85.
|
[25] |
Shah RV, Yeri AS, Murthy VL, et al. Association of multiorgan computed tomographic phenomap with adverse cardiovascular health outcomes: the framingham heart study[J]. JAMA Cardiol, 2017, 2(11): 1236-1246.
|