[1] |
Liu J, Dong L, Zhu Y, et al. Prostate cancer treatment - China's perspective [J]. Cancer Lett, 2022, 550: 215927.
|
[2] |
Qiu H, Cao S, Xu R. Cancer incidence, mortality, and burden in China: a time-trend analysis and comparison with the United States and United Kingdom based on the global epidemiological data released in 2020 [J]. Cancer Commun (Lond), 2021, 41(10): 1037-1048.
|
[3] |
Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022 [J]. CA Cancer J Clin, 2022, 72(1): 7-33.
|
[4] |
Xia C, Dong X, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants [J]. Chin Med J (Engl), 2022, 135(5): 584-590.
|
[5] |
Sekhoacha M, Riet K, Motloung P, et al. Prostate cancer review: genetics, diagnosis, treatment options, and alternative approaches [J]. Molecules, 2022, 27(17): 5730.
|
[6] |
Geczi T, Simonka Z, Lantos J, et al. Near-infrared fluorescence guided surgery: state of the evidence from a health technology assessment perspective [J]. Front Surg, 2022, 9: 919739.
|
[7] |
He K, Li P, Zhang Z, et al. Intraoperative near-infrared fluorescence imaging can identify pelvic nerves in patients with cervical cancer in real time during radical hysterectomy [J]. Eur J Nucl Med Mol Imaging, 2022, 49(8): 2929-2937.
|
[8] |
He K, Hong X, Chi C, et al. Efficacy of near-infrared fluorescence-guided hepatectomy for the detection of colorectal liver metastases: a randomized controlled trial [J]. J Am Coll Surg, 2022, 234(2): 130-137.
|
[9] |
Krishnan G, van den Berg NS, Nishio N, et al. Fluorescent molecular imaging can improve intraoperative sentinel margin detection in oral squamous cell carcinoma [J]. J Nucl Med, 2022, 63(8): 1162-1168.
|
[10] |
Zhang NN, Lu CY, Chen MJ, et al. Recent advances in near-infrared II imaging technology for biological detection [J]. J Nanobiotechnology, 2021, 19(1): 132.
|
[11] |
Meng X, Pang X, Zhang K, et al. Recent advances in near-infrared-II fluorescence imaging for deep-tissue molecular analysis and cancer diagnosis [J]. Small, 2022, 18(31): e2202035.
|
[12] |
Shinn J, Lee S, Lee HK, et al. Recent progress in development and applications of second near-infrared (NIR-II) nanoprobes [J]. Arch Pharm Res, 2021, 44(2): 165-181.
|
[13] |
Zhu S, Tian R, Antaris AL, et al. Near-infrared-II molecular dyes for cancer imaging and surgery [J]. Adv Mater, 2019, 31(24): e1900321.
|
[14] |
Su Y, Yu B, Wang S, et al. NIR-II bioimaging of small organic molecule [J]. Biomaterials, 2021, 271: 120717.
|
[15] |
Shi X, Zhang Z, Zhang Z, et al. Near-infrared window II fluorescence image-guided surgery of high-grade gliomas prolongs the progression-free survival of Patients [J]. IEEE Trans Biomed Eng, 2022, 69(6): 1889-1900.
|
[16] |
Hu Z, Fang C, Li B, et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows [J]. Nat Biomed Eng, 2020, 4(3): 259-271.
|
[17] |
Becker F, Offermann A, Roesch MC, et al. Up-regulation of POM121 is linked to prostate cancer aggressiveness and serves as a prognostic biomarker [J]. Urol Oncol, 2022, 40(8): 380 e11- e18.
|
[18] |
Becker F, Joerg V, Hupe MC, et al. Increased mediator complex subunit CDK19 expression associates with aggressive prostate cancer [J]. Int J Cancer, 2020, 146(2): 577-588.
|
[19] |
Chistiakov DA, Myasoedova VA, Grechko AV, et al. New biomarkers for diagnosis and prognosis of localized prostate cancer [J]. Semin Cancer Biol, 2018, 52(Pt 1): 9-16.
|
[20] |
van der Toom EE, Axelrod HD, de la Rosette JJ, et al. Prostate-specific markers to identify rare prostate cancer cells in liquid biopsies [J]. Nat Rev Urol, 2019, 16(1): 7-22.
|
[21] |
Dorff TB, FantI S, Farolfi A, et al. The evolving role of prostate-specific membrane antigen-based diagnostics and therapeutics in prostate cancer [J]. Am Soc Clin Oncol Educ Book, 2019, 39: 321-330.
|
[22] |
Wang F, Li Z, Feng X, et al. Advances in PSMA-targeted therapy for prostate cancer [J]. Prostate Cancer Prostatic Dis, 2022, 25(1): 11-26.
|
[23] |
van de WielE C, Sathekge M, de Spiegeleer B, et al. PSMA expression on neovasculature of solid tumors [J]. Histol Histopathol, 2020, 35(9): 919-27.
|
[24] |
Kwon H, Lim H, Ha H, et al. Structure-activity relationship studies of prostate-specific membrane antigen (PSMA) inhibitors derived from alpha-amino acid with (S)- or (R)-configuration at P1' region [J]. Bioorg Chem, 2020, 104: 104304.
|
[25] |
Tykvart J, Schimer J, Barinkova J, et al. Rational design of urea-based glutamate carboxypeptidase II (GCPII) inhibitors as versatile tools for specific drug targeting and delivery [J]. Bioorg Med Chem, 2014, 22(15): 4099-4108.
|
[26] |
Davis MI, Bennett MJ, Thomas LM, et al. Crystal structure of prostate-specific membrane antigen, a tumor marker and peptidase [J]. Proc Natl Acad Sci U S A, 2005, 102(17): 5981-5986.
|
[27] |
Barinka C, Rovenska M, Mlcochova P, et al. Structural insight into the pharmacophore pocket of human glutamate carboxypeptidase II [J]. J Med Chem, 2007, 50(14): 3267-73.
|
[28] |
Liu T, Liu C, Zhang Z, et al. 64Cu-PSMA-BCH: a new radiotracer for delayed PET imaging of prostate cancer [J]. Eur J Nucl Med Mol Imaging, 2021, 48(13): 4508-4516.
|
[29] |
Lundmark F, Olanders G, Rinne SS, et al. Design, synthesis, and evaluation of linker-optimised PSMA-targeting radioligands [J]. Pharmaceutics, 2022, 14(5): 1098.
|
[30] |
Plichta KA, Graves SA, Buatti JM. Prostate-specific membrane antigen (PSMA) theranostics for treatment of oligometastatic prostate cancer [J]. Int J Mol Sci, 2021, 22(22): 12095.
|
[31] |
Sindhwani S, Syed AM, Ngai J, et al. The entry of nanoparticles into solid tumours [J]. Nat Mater, 2020, 19(5): 566-575.
|
[32] |
O'connor JP, Aboagye EO, Adams JE, et al. Imaging biomarker roadmap for cancer studies [J]. Nat Rev Clin Oncol, 2017, 14(3): 169-186.
|
[33] |
Zhang RR, Schroeder AB, Grudzinski JJ, et al. Beyond the margins: real-time detection of cancer using targeted fluorophores [J]. Nat Rev Clin Oncol, 2017, 14(6): 347-364.
|
[34] |
Hiyama E. Fluorescence image-guided navigation surgery using indocyanine green for hepatoblastoma [J]. Children (Basel), 2021, 8(11): 1015.
|
[35] |
Ito R, Kamiya M, Urano Y. Molecular probes for fluorescence image-guided cancer surgery [J]. Curr Opin Chem Biol, 2022, 67:102112.
|
[36] |
Paraboschi I, Mantica G, Minoli DG, et al. Fluorescence-guided surgery and novel innovative technologies for improved visualization in pediatric urology [J]. Int J Environ Res Public Health, 2022, 19(18): 11194.
|
[37] |
Manny TB, Patel M, Hemal AK. Fluorescence-enhanced robotic radical prostatectomy using real-time lymphangiography and tissue marking with percutaneous injection of unconjugated indocyanine green: the initial clinical experience in 50 patients [J]. Eur Urol, 2014, 65(6): 1162-1168.
|
[38] |
Sucher R, Brunotte M, Seehofer D. Indocyanine green fluorescence staining in liver surgery[J]. Chirurg, 2020, 91(6): 466-473.
|
[39] |
Muraleedharan S, Tripathy K. Indocyanine green (ICG) angiography [M]. StatPearls. Treasure Island (FL). 2022.
|
[40] |
Egloff-juras C, Bezdetnaya L, Dolivet G, et al. NIR fluorescence-guided tumor surgery: new strategies for the use of indocyanine green [J]. Int J Nanomedicine, 2019, 14: 7823-7838.
|
[41] |
Uijen MJM, Derks YHW, Merkx RIJ, et al. PSMA radioligand therapy for solid tumors other than prostate cancer: background, opportunities, challenges, and first clinical reports [J]. Eur J Nucl Med Mol Imaging, 2021, 48(13): 4350-4368.
|