[1] |
Rountas C, Vlychou M, Vassiou K, et al. Imaging modalities for renal artery stenosis in suspected renovascular hypertension:prospective intraindividual comparison of color Doppler US, CT angiography, GD-enhanced MR angiography, and digital substraction angiography[J]. Ren Fail, 2007, 29(3): 295-302.
|
[2] |
张文. 老年缺血性肾病的诊断和治疗[J]. 肾脏病与透析肾移植杂志, 2023, 32(4): 346-347.Zhang W. Diagnosis and treatment of elderly ischemic kidney disease[J]. Chin J Nephrol Dial Transplant, 2023, 32(4): 346-347.
|
[3] |
Donaldson JS. Computed tomography angiography for renal artery stenosis in children: a flip flop isn't always bad[J]. Pediatr Radiol,2021, 51(3): 383-384.
|
[4] |
Liu S, Li W, Shi H, et al. Low-dose scanning technology combined with low-concentration contrast material in renal computed tomography angiography (CTA): a preliminary study[J]. Med Sci Monit, 2017, 23: 4351-4359.
|
[5] |
孙顗淼, 张颖. 糖尿病患者急性脑梗死取栓术后发生对比剂肾病的影响因素及预测模型建立[J/OL]. 中华肾病研究电子杂志,2024, 13(4): 188-194.Sun YM, Zhang Y. Influencing factors and prediction modeling of contrast-induced nephropathy after thrombectomy in diabetic patients with acute cerebral infarction[J/OL]. Chin J Kidney Dis Investig Electron Ed, 2024, 13(4): 188-194.
|
[6] |
杨绍汪. 经皮冠状动脉介入治疗急性心肌梗死患者术后发生对比剂肾病的风险模型的构建[J]. 实用医学杂志, 2023, 39(15): 1925-1931.Yang SW. Construction of a risk model of contrast-induced nephropathy after percutaneous coronary intervention for acute myocardial infarction[J]. J Pract Med, 2023, 39(15): 1925-1931.
|
[7] |
Jensen CT, Liu X, Tamm EP, et al. Image quality assessment of abdominal CT by use of new deep learning image reconstruction:initial experience[J]. AJR Am J Roentgenol, 2020, 215(1): 50-57.
|
[8] |
向青, 曹键, 罗涛, 等. 深度学习图像重建算法在80kV管电压下冠状动脉CT血管造影中的应用[J]. 新医学, 2024, 55(9): 685-692.Xiang Q, Cao J, Luo T, et al. Application of CCTA under 80 kV tube voltage based on deep learning image reconstruction algorithm[J].New Med, 2024, 55(9):685-692.
|
[9] |
唐友发, 王秋霞, 张进华. 深度学习重建算法在肠系膜上动脉CT血管成像中的应用评估[J]. 暨南大学学报(自然科学与医学版),2023, 44(3): 316-322. DOI: 10.11778/j.jdxb.20230069.Tang YF, Wang QX, Zhang JH. Evaluation of the application of deep learning reconstruction algorithm in superior mesenteric artery CT angiograpy[J]. J Jinan Univ Nat Sci Med Ed, 2023, 44(3):316-322.
|
[10] |
Koetzier LR, Mastrodicasa D, Szczykutowicz TP, et al. Deep learning image reconstruction for CT: technical principles and clinical prospects[J]. Radiology, 2023, 306(3): e221257.
|
[11] |
Verhagen MV, Dikkers R, de Kleine RH, et al. Assessment of hepatic artery anatomy in pediatric liver transplant recipients: MR angiography versus CT angiography[J]. Pediatr Transplant, 2021,25(4): e14002.
|
[12] |
Zhao XY, Li LL, Song J, et al. Effects of adaptive statistical iterative reconstruction-V technology on the image quality and radiation dose of unenhanced and enhanced CT scans of the piglet abdomen[J].Radiat Res, 2022, 197(2): 157-165.
|
[13] |
Ren Z, Zhang X, Hu Z, et al. Application of adaptive statistical iterative reconstruction-V with combination of 80 kV for reducing radiation dose and improving image quality in renal computed tomography angiography for slim patients[J]. Acad Radiol, 2019,26(11): e324-e332.
|
[14] |
Li Y, Liu X, Zhuang XH, et al. Assessment of low-dose paranasal sinus CT imaging using a new deep learning image reconstruction technique in children compared to adaptive statistical iterative reconstruction V (ASiR-V)[J]. BMC Med Imaging, 2022, 22(1): 106.
|
[15] |
Zhang X, Chen J, Yu N, et al. Reducing contrast medium dose with low photon energy images in renal dual-energy spectral CT angiography and adaptive statistical iterative reconstruction (ASIR)[J]. Br J Radiol, 2021, 94(1120): 20200974.
|
[16] |
Cao J, Lennartz S, Pisuchpen N, et al. Renal lesion characterization by dual-layer dual-energy CT: comparison of virtual and true unenhanced images[J]. AJR Am J Roentgenol, 2022, 219(4): 614-623.
|
[17] |
Mangold D, Salatzki J, Riffel J, et al. Dual-layer spectral CTA for TAVI planning using a split-phase protocol and low-keV virtual monoenergetic images: improved image quality in comparison with single-phase conventional CTA[J]. Rofo, 2022, 194(6): 652-659.
|
[18] |
Gao L, Lv Y, Jin Y, et al. Differential diagnosis of hepatic cancerous nodules and cirrhosis nodules by spectral CT imaging: a feasibility study[J]. Acta Radiol, 2019, 60(12): 1602-1608.
|
[19] |
Willemink MJ, Noël PB. The evolution of image reconstruction for CT-from filtered back projection to artificial intelligence[J]. Eur Radiol, 2019, 29(5): 2185-2195.
|
[20] |
Akagi M, Nakamura Y, Higaki T, et al. Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT[J].Eur Radiol, 2019, 29(11): 6163-6171.
|
[21] |
Carrascosa P, Leipsic JA, Capunay C, et al. Monochromatic image reconstruction by dual energy imaging allows half iodine load computed tomography coronary angiography[J]. Eur J Radiol, 2015,84(10): 1915-1920.
|
[22] |
Nakamura Y, Higaki T, Tatsugami F, et al. Deep learning-based CT image reconstruction: initial evaluation targeting hypovascular hepatic metastases[J]. Radiol Artif Intell, 2019, 1(6): e180011.
|
[23] |
Greffier J, Hamard A, Pereira F, et al. Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study[J]. Eur Radiol, 2020, 30(7): 3951-3959.
|
[24] |
Arndt C, Güttler F, Heinrich A, et al. Deep learning CT image reconstruction in clinical practice[J]. Rofo, 2021, 193(3): 252-261.
|
[25] |
Sun J, Li H, Li J, et al. Improving the image quality of pediatric chest CT angiography with low radiation dose and contrast volume using deep learning image reconstruction[J]. Quant Imaging Med Surg,2021, 11(7): 3051-3058.
|
[26] |
Wu D, Kim K, Li Q. Computationally efficient deep neural network for computed tomography image reconstruction[J]. Med Phys, 2019,46(11): 4763-4776.
|