切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2018, Vol. 12 ›› Issue (01) : 57 -62. doi: 10.3877/cma.j.issn.1674-3253.2018.01.015

所属专题: 文献

实验研究

长链脂酰辅酶A合成酶3介导Akt信号通路调控前列腺癌进展的研究
邱文瀚1, 王德娟1, 胡成1, 黄文涛1, 张慧敏1, 何建文1, 李一渊1, 邱剑光1, 李科1,()   
  1. 1. 510630 广州,中山大学附属第三医院泌尿外科
  • 收稿日期:2017-10-05 出版日期:2018-02-01
  • 通信作者: 李科
  • 基金资助:
    国家自然科学基金资助项目(81402111); 广州市科技计划"珠江科技新星"科技创新人才专项(201710010039); 广东省科技计划项目(2017A020215028); 中山大学青年教师培育项目(17ykpy48)

Long-chain acyl-CoA synthetase 3 induces Akt signaling pathway that regulate the progression of prostate cancer

Wenhan Qiu1, Dejuan Wang1, Cheng Hu1, Wentao Huang1, Huimin Zhang1, Jianwen He1, Yiyuan Li1, Jianguang Qiu1, Ke Li1,()   

  1. 1. Department of Urology, the Third Affiliated Hospitalof Sun Yat-sen University, Guangzhou 510630, China
  • Received:2017-10-05 Published:2018-02-01
  • Corresponding author: Ke Li
  • About author:
    Corresponding author: Li Ke, Email:
引用本文:

邱文瀚, 王德娟, 胡成, 黄文涛, 张慧敏, 何建文, 李一渊, 邱剑光, 李科. 长链脂酰辅酶A合成酶3介导Akt信号通路调控前列腺癌进展的研究[J]. 中华腔镜泌尿外科杂志(电子版), 2018, 12(01): 57-62.

Wenhan Qiu, Dejuan Wang, Cheng Hu, Wentao Huang, Huimin Zhang, Jianwen He, Yiyuan Li, Jianguang Qiu, Ke Li. Long-chain acyl-CoA synthetase 3 induces Akt signaling pathway that regulate the progression of prostate cancer[J]. Chinese Journal of Endourology(Electronic Edition), 2018, 12(01): 57-62.

目的

研究长链脂酰辅酶A合成酶3(ACSL3)表达对前列腺癌(PCa)细胞增殖能力的影响,探索ACSL3调控PI3K/Akt/MMP-9信号通路的分子机制,发掘ACSL3预测前列腺癌复发进展的临床应用价值。

方法

利用Western blot检测ACSL3在不同前列腺癌细胞系中的表达;构建稳定表达ACSL3的PCa细胞株,利用MTT法检测过表达ACSL3对PCa细胞增殖的改变;Western blot检测过表达ACSL3对PCa细胞中Akt,磷酸化Akt(p-Akt),基质金属蛋白酶9(MMP-9)表达水平的影响;通过免疫荧光染色实验探索ACSL3与Akt蛋白之间是否可能存在共定位;利用免疫组织化学法(IHC)比较不同Gleason评分患者中ACSL3的表达差异。

结果

Western blot检测显示ACSL3蛋白在局限性前列腺癌细胞22Rv1中存在着特异性的低表达,同时,ACSL3蛋白在激素非依赖性前列腺癌细胞中较激素依赖性前列腺癌细胞表达量更高。MTT实验表明过表达ACSL3后癌细胞增殖能力明显增强。此外,Western blot显示过表达ACSL3后p-Akt、MMP-9表达均明显上调;激光共聚焦显微镜下,免疫荧光染色显示ACSL3与Akt存在着蛋白共定位关系。临床检测中,IHC显示ACSL3表达量随Gleason评分升高而增加。

结论

ACSL3可能通过与Akt蛋白间的相互作用,介导PI3K/Akt/MMP-9信号通路的激活,影响PCa细胞增殖。此外,ACSL3的表达与前列腺癌的Gleason评分具有相关性,可能影响患者预后。

Objective

To investigate the molecular mechanism of ACSL3 expression in enhancing prostate cancer (PCa) cell proliferation, and to explore the potential value of ACSL3 expression in prognosis of the recurrence and metastasis of PCa.

Methods

Western blot was used to detect the expression of ACSL3 in different PCa cell lines. The pCDNA3.1(+)-Flag-ACSL3 plasmids were transfected into prostate cancer cells. And then, MTT assay was used to detect the alteration of cell proliferation. After over expression of ACSL3, western blot was used to detect the expression of Akt, phosphorylated Akt (p-Akt) and Matrix Metalloproteinase-9 (MMP-9) in cancer cells. Immunofluorescence staining was carried out to detect whether there was a co-localization between ACSL3 and Akt protein. Immunohistochemistry (IHC) assay was used to evaluate ACSL3 expression in tissues of PCa patients with different Gleason score.

Results

Western blot showed that ACSL3 protein got lower expression in localized prostate cancer cell line 22Rv1, while higher expression in hormone-independent PCa cells than in hormone-dependent PCa cells. The MTT assay demonstrated that the cell proliferation was significantly increased after ACSL3 overexpression. Moreover, overexpressing ACSL3 can also enhance p-Akt, MMP-9 expression. Immunofluorescence staining implied that there was a co-localization between ACSL3 and Akt in 22Rv1. In addition, IHC results revealed that the expression of ACSL3 protein was enhanced with the increasing of Gleason score, result in higher ACSL3 expression.

Conclusion

ACSL3 may induce the activation of PI3K/Akt/MMP-9 signaling pathway via the interaction between ACLS3 and Akt protein, which can enhance the proliferation of prostate cancer cells. Meanwhile, the increase expression of ACSL3 protein was correlated with higher Gleason score in patients with PCa.

图1 各种PCa细胞系中ACSL3蛋白表达
图2 过表达ACSL3后,实验组22Rv1细胞增殖速率较对照组明显加快
图3 过表达ACSL3蛋白后,Western blot检测t-Akt, p-Akt, MMP-9蛋白表达检测
图5 ACSL3蛋白在PCa标本中IHC染色结果
[1]
Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017[J]. CA Cancer J Clin, 2017, 67(1): 7-30.
[2]
Cooper LA, Page ST. Androgens and prostate disease[J]. Asian J Androl, 2014, 16(2): 248-255.
[3]
Saad F, Fizazi K. Androgen deprivation therapy and secondary hormone therapy in the management of hormone-sensitive and castration-resistant prostate cancer[J]. Urology, 2015, 86(5): 852-861.
[4]
Harris WP, Mostaghel EA, Nelson PS, et al. Androgen deprivation therapy: progress in understanding mechanisms of resistance and optimizing androgen depletion[J]. Nat Clin Pract Urol, 2009, 6(2): 76-85.
[5]
Galletti G, Leach BI, Lam L, et al. Mechanisms of resistance to systemic therapy in metastatic castration-resistant prostate cancer[J]. Cancer Treat Rev, 2017, 57: 16-27.
[6]
Ceder Y, Bjartell A, Culig Z, et al. The molecular evolution of castration-resistant prostate cancer[J]. Eur Urol Focus, 2016, 2(5): 506-513.
[7]
Marques RB, Dits NF, Erkens-Schulze S, et al. Modulation of androgen receptor signaling in hormonal therapy-resistant prostate cancer cell lines[J]. PLoS One, 2011, 6(8): e23144.
[8]
Obinata D, Takayama K, Fujiwara K, et al. Targeting Oct1 genomic function inhibits androgen receptor signaling and castration-resistant prostate cancer growth[J]. Oncogene, 2016, 35(49): 6350-6358.
[9]
Yan S. Long-chain acyl-CoA synthetase in fatty acid metabolism involved in liver and other diseases: An update[J]. World J Gastroenterol, 2015, 21(12): 3492.
[10]
Uddin S, Siraj AK, Al-Rasheed M, et al. Fatty acid synthase and AKT pathway signaling in a subset of papillary thyroid cancers[J]. J Clin Endocrinol Metab, 2008, 93(10): 4088-4097.
[11]
李科, 陈怡, 董艳, 等. ACSL3在前列腺癌细胞系中的表达及其对前列腺癌转移的影响[J]. 中国病理生理杂志, 2014, 30 (2): 250-255.
[12]
彭叔彬, 曾花, 邱剑光, 等. ENDOD1在前列腺癌组织及细胞中的表达及意义[J]. 中国病理生理杂志, 2017, 33(1): 7-12.
[13]
Yu S, Xu Z, Zou C, et al. Ion channel TRPM8 promotes hypoxic growth of prostate cancer cells via an O2 -independent and RACK1-mediated mechanism of HIF-1alpha stabilization[J]. J Pathol, 2014, 234(4): 514-525.
[14]
Sridhar SS, Freedland SJ, Gleave ME, et al. Castration-Resistant Prostate Cancer: From New Pathophysiology to New Treatment[J]. European Urology, 2014, 65(2): 289-299.
[15]
Karantanos T, Evans CP, Tombal B, et al. Understanding the mechanisms of androgen deprivation resistance in prostate cancer at the molecular level[J]. Eur Urol, 2015, 67(3): 470-479.
[16]
Lin HK, Yeh S, Kang HY, et al. Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor[J]. Proc Natl Acad Sci U S A, 2001, 98(13): 7200-7205.
[17]
Marques RB, Aghai A, de Ridder CM, et al. High efficacy of combination therapy using pi3k/akt inhibitors with androgen deprivation in prostate cancer preclinical models[J]. Eur Urol, 2015, 67(6): 1177-1185.
[18]
Thomas C, Lamoureux F, Crafter C, et al. Synergistic targeting of PI3K/AKT pathway and androgen receptor axis significantly delays castration-resistant prostate cancer progression in vivo[J]. Mol Cancer Ther, 2013, 12(11): 2342-2355.
[19]
Eccles SA, Welch DR. Metastasis: recent discoveries and novel treatment strategies[J]. Lancet, 2007, 369(9574): 1742-1757.
[20]
Mitra R, Le TT, Gorjala P, et al. Positive regulation of prostate cancer cell growth by lipid droplet forming and processing enzymes DGAT1 and ABHD5[J]. BMC Cancer, 2017, 17(1): 631.
[21]
Yue S, Li J, Lee SY, et al. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness[J]. Cell Metab, 2014, 19(3): 393-406.
[22]
Migita T, Takayama KI, Urano T, et al. ACSL3 promotes intratumoral steroidogenesis in prostate cancer cells[J]. Cancer Sci, 2017,108(10): 2011-2021.
[23]
Nelson AR, Fingleton B, Rothenberg ML, et al. Matrix metalloproteinases: biologic activity and clinical implications[J]. J Clin Oncol, 2000, 18(5): 1135-1149.
[24]
Cheng CY, Hsieh HL, Hsiao LD, et al. PI3-K/Akt/JNK/NF-kappaB is essential for MMP-9 expression and outgrowth in human limbal epithelial cells on intact amniotic membrane[J]. Stem Cell Res, 2012, 9(1): 9-23.
[1] 方晔, 谢晓红, 罗辉. 品管圈在提高前列腺癌穿刺检出率中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(07): 722-727.
[2] 江振剑, 蒋明, 黄大莉. TK1、Ki67蛋白在分化型甲状腺癌组织中的表达及预后价值研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 623-626.
[3] 李全喜, 唐辉军, 张健生, 杨飞. 基于MUSE-DWI与SS-DWI技术在前列腺癌图像中的对比研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 553-557.
[4] 梅津熠, 王燕, 瞿旻, 董振阳, 周增辉, 沈显琦, 李嘉伦, 高旭. 机器人前列腺癌根治术中"膀胱外中叶"的处理[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 429-433.
[5] 穆靖军, 马增妮, 曹晓明. 临床局限性前列腺癌包膜外侵犯的危险因素分析[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 326-331.
[6] 李全喜, 唐辉军, 唐友杰, 杨飞. DISCO成像技术在前列腺增生与前列腺癌鉴别诊断中的应用价值[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 332-335.
[7] 王邦郁, 陈晓鹏, 唐国军, 王佳妮. 尿液细胞外囊泡circRNA分类器对高级别前列腺癌诊断价值的初步研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 339-342.
[8] 刘硕儒, 王功炜, 张斌, 李书豪, 胡成. 新型溶瘤病毒M1激活内质网应激致前列腺癌细胞凋亡的机制[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 388-393.
[9] 范博洋, 王宁, 张骞, 王贵玉. 结直肠癌转移调控的环状RNA分子机制研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 426-430.
[10] 李思佳, 苏晓乐, 王利华. 通过抑制Wnt/β-catenin信号通路延缓肾间质纤维化研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 224-228.
[11] 樱峰, 王静, 刘雪清, 李潇. 水通道蛋白1对人角膜内皮细胞增殖、迁移及凋亡影响的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 146-151.
[12] 朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.
[13] 王苏贵, 皇立媛, 姜福金, 吴自余, 张先云, 李强, 严大理. 异质性细胞核核糖蛋白A2B1在前列腺癌中的作用及其靶向中药活性成分筛选研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 731-736.
[14] 杨思雨, 杨晶晶, 张平, 刘巧, 吴杰, 黄香金, 王怡洁, 付景云. 瘦素通过α1肾上腺素受体介导CaMKKβ-AMPKα信号通路在GT1-7细胞系中的作用[J]. 中华临床医师杂志(电子版), 2023, 17(05): 569-574.
[15] 何敏, 黄桢. 加减知柏地黄丸对特发性中枢性性早熟小鼠骨细胞骨形成蛋白-Smads信号通路的影响[J]. 中华临床实验室管理电子杂志, 2023, 11(04): 214-220.
阅读次数
全文


摘要