切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2018, Vol. 12 ›› Issue (01) : 57 -62. doi: 10.3877/cma.j.issn.1674-3253.2018.01.015

所属专题: 文献

实验研究

长链脂酰辅酶A合成酶3介导Akt信号通路调控前列腺癌进展的研究
邱文瀚1, 王德娟1, 胡成1, 黄文涛1, 张慧敏1, 何建文1, 李一渊1, 邱剑光1, 李科1,()   
  1. 1. 510630 广州,中山大学附属第三医院泌尿外科
  • 收稿日期:2017-10-05 出版日期:2018-02-01
  • 通信作者: 李科
  • 基金资助:
    国家自然科学基金资助项目(81402111); 广州市科技计划"珠江科技新星"科技创新人才专项(201710010039); 广东省科技计划项目(2017A020215028); 中山大学青年教师培育项目(17ykpy48)

Long-chain acyl-CoA synthetase 3 induces Akt signaling pathway that regulate the progression of prostate cancer

Wenhan Qiu1, Dejuan Wang1, Cheng Hu1, Wentao Huang1, Huimin Zhang1, Jianwen He1, Yiyuan Li1, Jianguang Qiu1, Ke Li1,()   

  1. 1. Department of Urology, the Third Affiliated Hospitalof Sun Yat-sen University, Guangzhou 510630, China
  • Received:2017-10-05 Published:2018-02-01
  • Corresponding author: Ke Li
  • About author:
    Corresponding author: Li Ke, Email:
引用本文:

邱文瀚, 王德娟, 胡成, 黄文涛, 张慧敏, 何建文, 李一渊, 邱剑光, 李科. 长链脂酰辅酶A合成酶3介导Akt信号通路调控前列腺癌进展的研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2018, 12(01): 57-62.

Wenhan Qiu, Dejuan Wang, Cheng Hu, Wentao Huang, Huimin Zhang, Jianwen He, Yiyuan Li, Jianguang Qiu, Ke Li. Long-chain acyl-CoA synthetase 3 induces Akt signaling pathway that regulate the progression of prostate cancer[J/OL]. Chinese Journal of Endourology(Electronic Edition), 2018, 12(01): 57-62.

目的

研究长链脂酰辅酶A合成酶3(ACSL3)表达对前列腺癌(PCa)细胞增殖能力的影响,探索ACSL3调控PI3K/Akt/MMP-9信号通路的分子机制,发掘ACSL3预测前列腺癌复发进展的临床应用价值。

方法

利用Western blot检测ACSL3在不同前列腺癌细胞系中的表达;构建稳定表达ACSL3的PCa细胞株,利用MTT法检测过表达ACSL3对PCa细胞增殖的改变;Western blot检测过表达ACSL3对PCa细胞中Akt,磷酸化Akt(p-Akt),基质金属蛋白酶9(MMP-9)表达水平的影响;通过免疫荧光染色实验探索ACSL3与Akt蛋白之间是否可能存在共定位;利用免疫组织化学法(IHC)比较不同Gleason评分患者中ACSL3的表达差异。

结果

Western blot检测显示ACSL3蛋白在局限性前列腺癌细胞22Rv1中存在着特异性的低表达,同时,ACSL3蛋白在激素非依赖性前列腺癌细胞中较激素依赖性前列腺癌细胞表达量更高。MTT实验表明过表达ACSL3后癌细胞增殖能力明显增强。此外,Western blot显示过表达ACSL3后p-Akt、MMP-9表达均明显上调;激光共聚焦显微镜下,免疫荧光染色显示ACSL3与Akt存在着蛋白共定位关系。临床检测中,IHC显示ACSL3表达量随Gleason评分升高而增加。

结论

ACSL3可能通过与Akt蛋白间的相互作用,介导PI3K/Akt/MMP-9信号通路的激活,影响PCa细胞增殖。此外,ACSL3的表达与前列腺癌的Gleason评分具有相关性,可能影响患者预后。

Objective

To investigate the molecular mechanism of ACSL3 expression in enhancing prostate cancer (PCa) cell proliferation, and to explore the potential value of ACSL3 expression in prognosis of the recurrence and metastasis of PCa.

Methods

Western blot was used to detect the expression of ACSL3 in different PCa cell lines. The pCDNA3.1(+)-Flag-ACSL3 plasmids were transfected into prostate cancer cells. And then, MTT assay was used to detect the alteration of cell proliferation. After over expression of ACSL3, western blot was used to detect the expression of Akt, phosphorylated Akt (p-Akt) and Matrix Metalloproteinase-9 (MMP-9) in cancer cells. Immunofluorescence staining was carried out to detect whether there was a co-localization between ACSL3 and Akt protein. Immunohistochemistry (IHC) assay was used to evaluate ACSL3 expression in tissues of PCa patients with different Gleason score.

Results

Western blot showed that ACSL3 protein got lower expression in localized prostate cancer cell line 22Rv1, while higher expression in hormone-independent PCa cells than in hormone-dependent PCa cells. The MTT assay demonstrated that the cell proliferation was significantly increased after ACSL3 overexpression. Moreover, overexpressing ACSL3 can also enhance p-Akt, MMP-9 expression. Immunofluorescence staining implied that there was a co-localization between ACSL3 and Akt in 22Rv1. In addition, IHC results revealed that the expression of ACSL3 protein was enhanced with the increasing of Gleason score, result in higher ACSL3 expression.

Conclusion

ACSL3 may induce the activation of PI3K/Akt/MMP-9 signaling pathway via the interaction between ACLS3 and Akt protein, which can enhance the proliferation of prostate cancer cells. Meanwhile, the increase expression of ACSL3 protein was correlated with higher Gleason score in patients with PCa.

图1 各种PCa细胞系中ACSL3蛋白表达
图2 过表达ACSL3后,实验组22Rv1细胞增殖速率较对照组明显加快
图3 过表达ACSL3蛋白后,Western blot检测t-Akt, p-Akt, MMP-9蛋白表达检测
图5 ACSL3蛋白在PCa标本中IHC染色结果
[1]
Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017[J]. CA Cancer J Clin, 2017, 67(1): 7-30.
[2]
Cooper LA, Page ST. Androgens and prostate disease[J]. Asian J Androl, 2014, 16(2): 248-255.
[3]
Saad F, Fizazi K. Androgen deprivation therapy and secondary hormone therapy in the management of hormone-sensitive and castration-resistant prostate cancer[J]. Urology, 2015, 86(5): 852-861.
[4]
Harris WP, Mostaghel EA, Nelson PS, et al. Androgen deprivation therapy: progress in understanding mechanisms of resistance and optimizing androgen depletion[J]. Nat Clin Pract Urol, 2009, 6(2): 76-85.
[5]
Galletti G, Leach BI, Lam L, et al. Mechanisms of resistance to systemic therapy in metastatic castration-resistant prostate cancer[J]. Cancer Treat Rev, 2017, 57: 16-27.
[6]
Ceder Y, Bjartell A, Culig Z, et al. The molecular evolution of castration-resistant prostate cancer[J]. Eur Urol Focus, 2016, 2(5): 506-513.
[7]
Marques RB, Dits NF, Erkens-Schulze S, et al. Modulation of androgen receptor signaling in hormonal therapy-resistant prostate cancer cell lines[J]. PLoS One, 2011, 6(8): e23144.
[8]
Obinata D, Takayama K, Fujiwara K, et al. Targeting Oct1 genomic function inhibits androgen receptor signaling and castration-resistant prostate cancer growth[J]. Oncogene, 2016, 35(49): 6350-6358.
[9]
Yan S. Long-chain acyl-CoA synthetase in fatty acid metabolism involved in liver and other diseases: An update[J]. World J Gastroenterol, 2015, 21(12): 3492.
[10]
Uddin S, Siraj AK, Al-Rasheed M, et al. Fatty acid synthase and AKT pathway signaling in a subset of papillary thyroid cancers[J]. J Clin Endocrinol Metab, 2008, 93(10): 4088-4097.
[11]
李科, 陈怡, 董艳, 等. ACSL3在前列腺癌细胞系中的表达及其对前列腺癌转移的影响[J]. 中国病理生理杂志, 2014, 30 (2): 250-255.
[12]
彭叔彬, 曾花, 邱剑光, 等. ENDOD1在前列腺癌组织及细胞中的表达及意义[J]. 中国病理生理杂志, 2017, 33(1): 7-12.
[13]
Yu S, Xu Z, Zou C, et al. Ion channel TRPM8 promotes hypoxic growth of prostate cancer cells via an O2 -independent and RACK1-mediated mechanism of HIF-1alpha stabilization[J]. J Pathol, 2014, 234(4): 514-525.
[14]
Sridhar SS, Freedland SJ, Gleave ME, et al. Castration-Resistant Prostate Cancer: From New Pathophysiology to New Treatment[J]. European Urology, 2014, 65(2): 289-299.
[15]
Karantanos T, Evans CP, Tombal B, et al. Understanding the mechanisms of androgen deprivation resistance in prostate cancer at the molecular level[J]. Eur Urol, 2015, 67(3): 470-479.
[16]
Lin HK, Yeh S, Kang HY, et al. Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor[J]. Proc Natl Acad Sci U S A, 2001, 98(13): 7200-7205.
[17]
Marques RB, Aghai A, de Ridder CM, et al. High efficacy of combination therapy using pi3k/akt inhibitors with androgen deprivation in prostate cancer preclinical models[J]. Eur Urol, 2015, 67(6): 1177-1185.
[18]
Thomas C, Lamoureux F, Crafter C, et al. Synergistic targeting of PI3K/AKT pathway and androgen receptor axis significantly delays castration-resistant prostate cancer progression in vivo[J]. Mol Cancer Ther, 2013, 12(11): 2342-2355.
[19]
Eccles SA, Welch DR. Metastasis: recent discoveries and novel treatment strategies[J]. Lancet, 2007, 369(9574): 1742-1757.
[20]
Mitra R, Le TT, Gorjala P, et al. Positive regulation of prostate cancer cell growth by lipid droplet forming and processing enzymes DGAT1 and ABHD5[J]. BMC Cancer, 2017, 17(1): 631.
[21]
Yue S, Li J, Lee SY, et al. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness[J]. Cell Metab, 2014, 19(3): 393-406.
[22]
Migita T, Takayama KI, Urano T, et al. ACSL3 promotes intratumoral steroidogenesis in prostate cancer cells[J]. Cancer Sci, 2017,108(10): 2011-2021.
[23]
Nelson AR, Fingleton B, Rothenberg ML, et al. Matrix metalloproteinases: biologic activity and clinical implications[J]. J Clin Oncol, 2000, 18(5): 1135-1149.
[24]
Cheng CY, Hsieh HL, Hsiao LD, et al. PI3-K/Akt/JNK/NF-kappaB is essential for MMP-9 expression and outgrowth in human limbal epithelial cells on intact amniotic membrane[J]. Stem Cell Res, 2012, 9(1): 9-23.
[1] 唐丹, 姚晓曦, 杨博文, 薛绍龙, 李梦瑶, 韦柳杏, 郄明蓉. 双肾上腺皮质激素样激酶1对子宫内膜样腺癌患者临床特征的影响[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 582-590.
[2] 黄福, 王黔, 金相任, 唐云川. VEGFR2、miR-27a-5p在胃癌组织中的表达与临床病理参数及预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 558-561.
[3] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[4] 祝炜安, 林华慧, 吴建杰, 黄炯煅, 吴婷婷, 赖文杰. RDM1通过CDK4促进前列腺癌细胞进展的研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 618-625.
[5] 王功炜, 李书豪, 魏松, 吕博然, 胡成. 溶瘤病毒M1对不同前列腺癌细胞杀伤效果的研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 626-632.
[6] 施一辉, 张平新, 朱勇, 杨德林. 机器人辅助前列腺根治术后切缘阳性的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 633-637.
[7] 胡思平, 熊性宇, 徐航, 杨璐. 衰老相关分泌表型因子在前列腺癌发生发展中的作用机制[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 425-434.
[8] 杨勇军, 曾一鸣, 贺显雅, 卢强, 李远伟. ASA分级≥Ⅲ级患者局麻经会阴前列腺多模态影像融合穿刺的安全性和有效性[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 441-447.
[9] 李鑫钊, 张廷涛, 朱峰, 刘金山, 刘大闯. 血纤维蛋白原、D-二聚体及碱性磷酸酶诊断前列腺癌骨转移的价值分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 459-463.
[10] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[11] 张敏, 朱建华, 缪雅芳, 郭锦荣. 菝葜皂苷元对肝癌HepG2细胞抑制作用的机制研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 328-335.
[12] 黄程鑫, 陈莉, 刘伊楚, 王水良, 赖晓凤. OPA1 在乳腺癌组织的表达特征及在ER阳性乳腺癌细胞中的生物学功能研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 275-284.
[13] 季加翠, 孙春斌, 罗恩丽. 姜黄素通过调节NF-κB/NLRP3通路减轻LPS诱导小胶质细胞神经炎症损伤[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 193-203.
[14] 曾聿理, 雷发容, 肖慧, 邱德亮, 谢静, 吴寻. 氯普鲁卡因通过调控circRNA-ZKSCAN1表达抑制肝癌Huh-7细胞体外生长和转移的研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 220-228.
[15] 靳英, 付小霞, 陈美茹, 袁璐, 郝力瑶. CD147调控MAPK信号通路对结肠癌细胞增殖和凋亡的影响及机制研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 474-480.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?