切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2020, Vol. 14 ›› Issue (06) : 409 -413. doi: 10.3877/cma.j.issn.1674-3253.2020.06.003

所属专题: 机器人手术 文献

临床研究

三站进阶模式在机器人前列腺癌根治术培训中的应用价值
刘方1, 曹智2, 许亚龙2, 吉进2, 周永强3, 王富博2,()   
  1. 1. 337000 江西省萍乡市人民医院泌尿外科
    2. 200433 上海,第二军医大学附属长海医院泌尿外科
    3. 215200 江苏,苏州市第九人民医院泌尿外科
  • 收稿日期:2020-07-19 出版日期:2020-12-01
  • 通信作者: 王富博

The application value of three-station advanced model in the training of robot-assisted laparoscopic prostatectomy

Fang Liu1, Zhi Cao2, Yalong Xu2, Jin Ji2, Yongqiang Zhou3, Fubo Wang2,()   

  1. 1. Department of Urology, Pingxiang People's Hospital of Jiangxi Province, Pingxiang 337000, China
    2. Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
    3. Department of Urology, the Ninth People's Hospital of Suzhou, Jiangsu 215200, China
  • Received:2020-07-19 Published:2020-12-01
  • Corresponding author: Fubo Wang
  • About author:
    Corresponding author: Wang Fubo, Email:
引用本文:

刘方, 曹智, 许亚龙, 吉进, 周永强, 王富博. 三站进阶模式在机器人前列腺癌根治术培训中的应用价值[J]. 中华腔镜泌尿外科杂志(电子版), 2020, 14(06): 409-413.

Fang Liu, Zhi Cao, Yalong Xu, Jin Ji, Yongqiang Zhou, Fubo Wang. The application value of three-station advanced model in the training of robot-assisted laparoscopic prostatectomy[J]. Chinese Journal of Endourology(Electronic Edition), 2020, 14(06): 409-413.

目的

探讨体外模型+虚拟现实+实际操作三站进阶模式在机器人辅助前列腺癌根治术培训中的应用价值。

方法

第一站:体外模型训练。受训者在体外模型上进行端端吻合培训,使用Test T、Test R两种不同的评价方法对受训者进行评分。第二站:机器人虚拟现实培训。采用虚拟培训技术培训受训者,评价培训前后指标的变化。第三站:机器人体内操作。受训者与对照组医师进行机器人辅助膀胱尿道吻合,应用膀胱注水试验,评价吻合的可靠性。

结果

第一站中,6名受训者总体得分显著提高(P=0.004),由训练前的(50.0±10.5)提高至(79.2±9.7);吻合时间明显缩短(P<0.001),由(654.5±24.7)s降至(331.0±36.6)s。第二站中,6名受训者的总体分数显著提高(P<0.001),由训练前的(35.3±3.1)提高至(86.0±4.2);吻合时间显著下降(P<0.001),由(345.5±31.2)s降至(170.0±7.4)s。第三站中,6名受训者在上级医师的指导下均顺利完成膀胱尿道吻合,相比6名对照组医师平均吻合时间由(40.7±8.6)min缩短至(27.5±8.4) min(P=0.023)。在膀胱注水试验中,受训者组未发现吻合口漏水情况,对照组有2例发生漏水情况,由上级医师进行了补救性缝合。

结论

三站进阶模式能够快速缩短术者机器人前列腺癌根治术学习曲线,有利于在我国有限的机器人设备情况下推广。

Objective

To present the application value of a three-station advanced model combining vitro model, virtual reality and practical operation together in the training of robot-assisted laparoscopic prostatectomy.

Method

The first station: vitro model training. The trainees were asked to practice end to end anastomosis on vitro models, and were graded on both Test T and Test R evaluation criterion. The second station: robot virtual reality training. The virtual reality technology was used and several parameters were evaluated before and after training. The third station: The trainees and urologists in the control group performed robot-assisted vesicourethral anastomosis, and the reliability of the anastomosis was evaluated by bladder affusion test.

Results

In the first station, the overall scores of six trainees were significantly improved [(50.0±10.5) vs (79.2±9.7), P=0.004] and the anastomosis time was also obviously shortened [(654.5±24.7) s vs (331.0±36.6) s, P<0.001]. The overall scores [(35.3±3.1) vs (86.0±4.2), P<0.001] and the anastomosis time [(345.5±31.2) s vs (170.0±7.4) s, P<0.001] of the trainees significantly improved in the second station as well. In the third station, all the 6 trainees successfully accomplished vesicourethral anastomosis under the guidance of superior doctors, and the average anastomosis time was shortened from (40.7±8.6) min to (27.5±8.4) min compared with the control group (P=0.023). In the bladder affusion test, no leakage was found in the trainee group, while leakage occurred in two cases in the control group, and remedial suture was performed by superior doctors.

Conclusion

The three-station advanced mode could shorten the learning curve of the robot-assisted laparoscopic prostatectomy, which is conducive to the promotion with limited robotic equipment in China.

图1 三站式进阶课程
表1 机器人模拟训练打分表
表2 自制吻合模型考核情况
表3 机器人模拟训练考核成绩(±s
[1]
Bric JD, Lumbard DC, Frelich MJ, et al. Current state of virtual reality simulation in robotic surgery training: a review[J]. Surg Endosc, 2016, 30(6): 2169-2178.
[2]
Collins JW, Levy J, Stefanidis D, et al. Utilising the Delphi Process to Develop a Proficiency-based Progression Train-the-trainer Course for Robotic Surgery Training[J]. Eur Urol, 2019, 75(5): 775-785.
[3]
Sroka G, Feldman LS, Vassiliou MC, et al. Fundamentals of laparoscopic surgery simulator training to proficiency improves laparoscopic performance in the operating room-a randomized controlled trial[J]. Am J Surg, 2010, 199(1): 115-120.
[4]
Goh A, Joseph R, O'Malley M, et al. Development and validation of inanimate tasks for robotic surgical skills assessment and training[J]. J Urol, 2010, 183(4S): e516.
[5]
Nicholas R Brook, Paolo Dell'Oglio, Ravi Barod, et al. Comprehensive training in robotic surgery[J]. Curr Opin Urol, 2019, 29(1): 1-9.
[6]
Preston MA, Blew BD, Breau RH, et al. Survey of senior resident training in urologic laparoscopy, robotics and endourology surgery in Canada[J]. Can Urol Assoc J, 2010, 4(1): 42-46.
[7]
Duchene DA, Moinzadeh A, Gill IS, et al. Survey of residency training in laparoscopic and robotic surgery[J]. J Urol, 2006, 176(5): 2158-2166; discussion 2167.
[8]
Maraldo D, Garcia FU, Mutharasan R. Method for quantification of a prostate cancer biomarker in urine without sample preparation[J]. Anal Chem, 2007, 79(20): 7683-7690.
[9]
Chen R, Rodrigues Armijo P, Krause C, et al. A comprehensive review of robotic surgery curriculum and training for residents, fellows, and postgraduate surgical education[J]. Surg Endosc, 2020, 34(1): 361-367.
[10]
鲁欣, 高旭, 孙颖浩. 腹腔镜培训效果评价方法的研究[J/CD]. 中华腔镜泌尿外科杂志(电子版), 2009, 3(1): 19-21.
[11]
Kelly DC, Margules AC, Kundavaram CR, et al. Face, content, and construct validation of the da Vinci Skills Simulator[J]. J Urol, 2012, 79(5): 1068-1072.
[12]
Hung AJ, Patil MB, Zehnder P, et al. Concurrent and predictive validation of a novel robotic surgery simulator: a prospective, randomized study[J]. J Urol, 2012, 187(2): 630-637.
[13]
Goh AC, Goldfarb DW, Sander JC, et al. Global evaluative assessment of robotic skills: validation of a clinical assessment tool to measure robotic surgical skills[J]. J Urol, 2012, 187(1): 247-252.
[14]
Tou S, Bergamaschi R, Heald RJ et al. Structured training in robotic colorectal surgery[J]. Colorectal Dis, 2015, 17(3): 185.
[15]
黄海, 马晓明, 刘皓, 等. 机器人辅助腹腔镜前列腺癌根治术的进展[J/CD]. 中华腔镜泌尿外科杂志(电子版), 2018, 12(3): 145-148.
[16]
Collins JW, Wisz P. Training in robotic surgery, replicating the airline industry. How far have we come?[J]. World J Urol, 2020, 38(7): 1645-1651.
[17]
Kerr B, O'Leary JP. The training of the surgeon: Dr. Halsted's greatest legacy[J]. Am Surg, 1999, 65(11): 1101-1102.
[18]
Volpe A, Ahmed K, Dasgupta P, et al. Pilot validation study of the european association of urology robotic training curriculum[J]. Eur Urol, 2015, 68(2): 292-299.
[19]
Vanlander AE, Mazzone E, Collins JW, et al. Orsi consensus meeting on european robotic training (ocert): results from the first multispecialty consensus meeting on training in robot-assisted surgery[J]. Eur Urol, 2020, published online ahead of print.
[20]
Patel HR, Linares A, Joseph JV. Robotic and laparoscopic surgery: cost and training[J]. Surg Oncol, 2009, 18(3): 242-246.
[21]
O'Kelly F, Farhat WA, Koyle MA. Cost, training and simulation models for robotic-assisted surgery in pediatric urology[J]. World J Urol, 2020, 38(8): 1875-1882.
[22]
Stefanidis D, Yonce TC, Green JM, et al. Cadavers versus pigs: which are better for procedural training of surgery residents outside the OR?[J]. Surgery, 2013, 154(1): 34-37.
[23]
Zhao B, Lam J, Hollandsworth HM, et al. General surgery training in the era of robotic surgery: a qualitative analysis of perceptions from resident and attending surgeons[J]. Surg Endosc, 2020, 34(4): 1712-1721.
[24]
Orvieto MA, Marchetti P, Castillo OA, et al. Robotic technologies in surgical oncology training and practice[J]. Surg Oncol, 2011, 20(3): 203-209.
[25]
Stefano Puliatti, Elio Mazzone, Paolo Dell'Oglio. Training in robot-assisted surgery[J]. Curr Opin Urol, 2020, 30(1): 65-72.
[26]
Lee JY, Mucksavage P, Sundaram CP et al. Best practices for robotic surgery training and credentialing[J]. J Urol, 2011, 185(4): 1191-1197.
[27]
Zorn KC, Gautam G, Shalhav AL, et al. Training, credentialing, proctoring and medicolegal risks of robotic urological surgery: recommendations of the society of urologic robotic surgeons[J]. J Urol, 2009, 182(3): 1126-1132.
[28]
Palagonia E, Mazzone E, De Naeyer G, et al. The safety of urologic robotic surgery depends on the skills of the surgeon[J]. World J Urol, 2020, 38(6): 1373-1383.
[29]
Hung AJ, Jayaratna IS, Teruya K, et al. Comparative assessment of three standardized robotic surgery training methods[J]. BJU Int, 2013, 112(6): 864-871.
[30]
Witthaus MW, Farooq S, Melnyk R, et al. Incorporation and validation of clinically relevant performance metrics of simulation (CRPMS) into a novel full-immersion simulation platform for nerve-sparing robot-assisted radical prostatectomy (NS-RARP) utilizing three-dimensional printing and hydrogel casting technology[J]. BJU Int, 2020, 125(2): 322-332.
[31]
Schreuder HW, Wolswijk R, Zweemer RP, et al. Training and learning robotic surgery, time for a more structured approach: a systematic review[J]. BJOG, 2012, 119(2): 137-149.
[32]
Fong Y, Buell JF, Collins J, et al. Applying the Delphi process for development of a hepatopancreaticobiliary robotic surgery training curriculum[J]. Surg Endosc, 2020, published online ahead of print.
[33]
Finnegan KT, Meraney AM, Staff I et al. da Vinci Skills Simulator construct validation study: correlation of prior robotic experience with overall score and time score simulator performance[J]. J Urol, 2012, 80(2): 330-335.
[34]
Schommer E, Patel VR, Mouraviev V, et al. Diffusion of robotic technology into urologic practice has led to improved resident physician robotic skills[J]. J Surg Educ, 2017, 74(1): 55-60.
[35]
Kinross JM, Mason SE, Mylonas G et al. Next-generation robotics in gastrointestinal surgery[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(7): 430-440.
[1] 方晔, 谢晓红, 罗辉. 品管圈在提高前列腺癌穿刺检出率中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(07): 722-727.
[2] 伊喆, 王志新, 陈伟, 齐伟亚, 方杰, 石海飞, 赵夏, 赵喆, 竺枫, 盛伟, 陈焱, 张宇昊, 朱瑾, 殷耀斌, 杨勇, 陈山林, 刘波. 机器人辅助无移位急性舟骨骨折经皮内固定的诊疗与手术操作规范[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 464-468.
[3] 武慧铭, 郭仁凯, 李辉宇. 机器人辅助下经自然腔道取标本手术治疗结直肠癌安全性和有效性的Meta分析[J]. 中华普通外科学文献(电子版), 2023, 17(05): 395-400.
[4] 罗佳, 赵晶晶, 曹小珍, 钟玲, 范林军, 曾令娟. 单侧腋窝双侧乳晕入路机器人甲状腺术后局部加压预防皮下隧道出血的对照研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 603-606.
[5] 刘波, 涂志坚, 李传富, 李江涛, 陈国栋. 机器人解剖性左半肝切除术[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 486-486.
[6] 刘成, 赖聪, 黄健, 王建辰, 罗茜芸, 许可慰. EDGE SP1000单孔手术机器人辅助腹腔镜下猪输尿管部分切除联合端端吻合术的可行性研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 642-646.
[7] 李全喜, 唐辉军, 张健生, 杨飞. 基于MUSE-DWI与SS-DWI技术在前列腺癌图像中的对比研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 553-557.
[8] 梅津熠, 王燕, 瞿旻, 董振阳, 周增辉, 沈显琦, 李嘉伦, 高旭. 机器人前列腺癌根治术中"膀胱外中叶"的处理[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 429-433.
[9] 吴少峰, 张轶男, 孙杰. 机器人辅助手术在儿童微创泌尿手术中的应用和展望[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 440-444.
[10] 李腾成, 谭益元, 黄群雄, 吴杰英, 肖恒军, 胡成, 李茂胤, 高新, 狄金明. 机器人腹腔镜后入路完全筋膜内根治性前列腺切除术治疗早期前列腺癌[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 452-456.
[11] 张立鑫, 朱建交, 李敬东. 机器人肝切除技术的优势与劣势[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 477-479.
[12] 党圆圆, 赵虎林. 机器人辅助小脑齿状核脑深部电刺激植入术[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 320-320.
[13] 陆志峰, 周佳佳, 梁舒. 虚拟现实技术在治疗弱视中的临床应用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 891-895.
[14] 李岩松, 李涛, 张元鸣飞, 李志鹏, 周谋望. 头戴式虚拟现实设备辅助全膝关节置换术后康复的初步研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 676-681.
[15] 王苏贵, 皇立媛, 姜福金, 吴自余, 张先云, 李强, 严大理. 异质性细胞核核糖蛋白A2B1在前列腺癌中的作用及其靶向中药活性成分筛选研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 731-736.
阅读次数
全文


摘要