切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2020, Vol. 14 ›› Issue (06) : 460 -465. doi: 10.3877/cma.j.issn.1674-3253.2020.06.014

所属专题: 文献

实验研究

PFKFB3基因在前列腺癌中的表达及其对前列腺癌细胞糖酵解及生长的影响
李骏1, 张倩2, 江东根1, 陈楚杰1, 庞俊1,()   
  1. 1. 518107 深圳,中山大学附属第七医院泌尿外科
    2. 518107 深圳,中山大学附属第七医院康复医学科
  • 收稿日期:2020-03-25 出版日期:2020-12-01
  • 通信作者: 庞俊
  • 基金资助:
    国家自然科学基金资助项目(81772754、81902613); 广东省自然科学基金重大基础研究培育项目(2017A03038009); 广东省医学科学技术研究基金资助项目(A2019555、A2019490)

Expression of PFKFB3 in prostate cancer and its effect on glycolysis and growth of prostate cancer cells

Jun Li1, Qian Zhang2, Donggen Jiang1, Chujie Chen1, Jun Pang1,()   

  1. 1. Department of Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 508107, China
    2. Department of Rehabilitation Medicine, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 508107, China
  • Received:2020-03-25 Published:2020-12-01
  • Corresponding author: Jun Pang
  • About author:
    Corresponding author: Pang Jun, Email:
引用本文:

李骏, 张倩, 江东根, 陈楚杰, 庞俊. PFKFB3基因在前列腺癌中的表达及其对前列腺癌细胞糖酵解及生长的影响[J]. 中华腔镜泌尿外科杂志(电子版), 2020, 14(06): 460-465.

Jun Li, Qian Zhang, Donggen Jiang, Chujie Chen, Jun Pang. Expression of PFKFB3 in prostate cancer and its effect on glycolysis and growth of prostate cancer cells[J]. Chinese Journal of Endourology(Electronic Edition), 2020, 14(06): 460-465.

目的

探讨6-磷酸果糖激酶-2/果糖双磷酸酶-2同工酶3(PFKFB3)基因在前列腺癌中的表达及其对前列腺癌细胞糖酵解及生长的影响。

方法

收集我院病理科前列腺增生和前列腺癌蜡块组织,应用免疫组化技术检测PFKFB3的表达水平。通过荧光定量PCR和Western blot实验检测正常前列腺上皮细胞(RWPE-1)和四种前列腺癌细胞系(PC3、LNCaP、DU145、C4-2)中PFKFB3的表达。应用RNA干扰技术敲低PFKFB3表达,采用细胞糖酵解试剂盒、CCK-8和克隆形成实验检测PFKFB3对前列腺癌细胞的糖酵解和增殖活性的影响。

结果

与前列腺增生组织相比,前列腺癌组织中的PFKFB3表达量明显增高[(59.7±0.25) vs (3.08±0.16),P<0.05],且病理Gleason评分越高,PFKFB3表达量也越高。同样PFKFB3在不同前列腺癌细胞系中均明显高表达。抑制PFKFB3基因表达后,前列腺癌细胞的糖酵解和增殖能力显著降低。

结论

PFKFB3基因在前列腺癌恶性进展中表达上调,促进肿瘤细胞的糖酵解和增殖,靶向PFKFB3可能为前列腺癌分子诊断和治疗提供潜在的应用价值。

Objective

To investigate the expression of 6-phosphofructo-2-kinase /fructose-2,6-biphosphatase 3 (PFKFB3) in prostate cancer and its effect on glycolysis and growth of prostate cancer cells.

Methods

Paraffin embedded tissues of benign prostatic hyperplasia (BPH) and prostate cancer in the Department of Pathology in our hospital were collected, and the expression level of PFKFB3 was detected by immunohistochemistry. PFKFB3 expression in benign prostatic epithelial cells (RWPE-1) and four prostate cancer cell lines (PC3, LNCaP, DU145, C4-2) was detected by fluorescence quantitative PCR and Western blotting. RNA interference was used to knock down the expression of PFKFB3, and the effects of PFKFB3 on the glycolysis and proliferation of prostate cancer cells were detected by cell glycolysis kit, CCK-8 and clonal formation assay.

Results

The expression level of PFKFB3 in prostate cancer tissues is significantly higher than that in benign prostatic hyperplasia tissues [(5.97±0.25) vs (3.08±0.16), P<0.05], and the expression level of PFKFB3 increases with the higher pathological Gleason score. PFKFB3 is also highly expressed in different prostate cancer cell lines. Inhibition of PFKFB3 significantly reduces glycolysis and proliferation of prostate cancer cells.

Conclusion

PFKFB3 gene is up-regulated in the malignant progression of prostate cancer and promotes glycolysis and proliferation of tumor cells. Targeting PFKFB3 may provide potential application value for molecular diagnosis and treatment of prostate cancer.

图1 PFKFB3在前列腺增生和前列腺癌组织中的表达
图2 PFKFB3在前列腺癌细胞系中的表达
图3 转染PFKFB3-shRNA后PFKFB3的表达
图4 PFKFB3-shRNA抑制前列腺癌细胞的糖酵解和增殖
[1]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019[J]. CA Cancer J Clin, 2019,69(1): 7-34.
[2]
陈东, 李志勇, 李永红, 等. 机器人辅助前列腺癌根治术对比开放前列腺癌根治术:孰优孰劣?[J/CD]. 中华腔镜泌尿外科杂志(电子版), 2019, 13(4): 217-220.
[3]
郑琛琛, 周祥福. 2019版欧洲泌尿外科前列腺癌指南更新要点解读[J/CD]. 中华腔镜泌尿外科杂志(电子版), 2019, 13(6): 361-364.
[4]
Koppenol WH, Bounds PL, Dang CV. Otto Warburg's contributions to current concepts of cancer metabolism[J]. Nat Rev Cancer, 2011, 11(5): 325-337.
[5]
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation[J]. Science, 2009, 324(5930): 1029-1033.
[6]
黄应龙, 左毅刚, 王剑松, 等.肿瘤代谢重编程及其在膀胱癌研究中的进展[J]. 中华实验外科杂志,2019, 36(12): 2312-2316.
[7]
Hay N. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? [J]. Nat Rev Cancer, 2016, 16(10): 635-649. Review.
[8]
Potter M, Newport E, Morten KJ. The Warburg effect: 80 years on[J]. Biochem Soc Trans, 2016, 44(5): 1499-1505.
[9]
Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? [J]. Nat Rev Cancer, 2004, 4(11): 891-899.
[10]
Yi W, Clark PM, Mason DE, et al. Phosphofructokinase 1 glycosylation regulates cell growth and metabolism[J]. Science, 2012, 337(6097): 975-980.
[11]
Ros S, Schulze A. Balancing glycolytic flux: the role of 6-phosphofructo-2-kinase /fructose 2,6-bisphosphatases in cancer metabolism[J]. Cancer Metab, 2013, 1(1): 1-8.
[12]
Yalcin A, Telang S, Clem B, et al. Regulation of glucose metabolism by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases in cancer[J]. Exp Mol Pathol, 2009, 86 (3): 174-179.
[13]
O'Neal J, Clem A, Reynolds L, et al. Inhibition of 6-phosphofructo-2-kinase (PFKFB3) suppresses glucose metabolism and the growth of HER2+ breast cancer[J]. Breast Cancer Res Treat, 2016, 160(1): 29-40.
[14]
Shi L, Pan H, Liu Z, et al. Roles of PFKFB3 in cancer[J]. Signal Transduct Target Ther, 2017, 2: 17044.
[15]
Xing Z, Zhang Y, Liang K, et al. Expression of long noncoding rna yiya promotes glycolysis in breast cancer[J]. Cancer Res, 2018, 78(16): 4524-4532.
[16]
Han J, Meng Q, Xi Q, et al. PFKFB3 was overexpressed in gastric cancer patients and promoted the proliferation and migration of gastric cancer cells[J]. Cancer Biomark, 2017, 18(3): 249-256.
[17]
Zhou L, Zhan ML, Tang Y, et al. Effects of β-caryophyllene on arginine ADP-ribosyltransferase 1-mediated regulation of glycolysis in colorectal cancer under high-glucose conditions[J]. Int J Oncol, 2018, 53(4): 1613-1624.
[1] 方晔, 谢晓红, 罗辉. 品管圈在提高前列腺癌穿刺检出率中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(07): 722-727.
[2] 江振剑, 蒋明, 黄大莉. TK1、Ki67蛋白在分化型甲状腺癌组织中的表达及预后价值研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 623-626.
[3] 李全喜, 唐辉军, 张健生, 杨飞. 基于MUSE-DWI与SS-DWI技术在前列腺癌图像中的对比研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 553-557.
[4] 梅津熠, 王燕, 瞿旻, 董振阳, 周增辉, 沈显琦, 李嘉伦, 高旭. 机器人前列腺癌根治术中"膀胱外中叶"的处理[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 429-433.
[5] 穆靖军, 马增妮, 曹晓明. 临床局限性前列腺癌包膜外侵犯的危险因素分析[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 326-331.
[6] 李全喜, 唐辉军, 唐友杰, 杨飞. DISCO成像技术在前列腺增生与前列腺癌鉴别诊断中的应用价值[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 332-335.
[7] 王邦郁, 陈晓鹏, 唐国军, 王佳妮. 尿液细胞外囊泡circRNA分类器对高级别前列腺癌诊断价值的初步研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 339-342.
[8] 刘硕儒, 王功炜, 张斌, 李书豪, 胡成. 新型溶瘤病毒M1激活内质网应激致前列腺癌细胞凋亡的机制[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 388-393.
[9] 郑嘉裕, 吴建杰, 李小娟, 曾恒达, 李国邦, 黄炯煅, 温星桥. hsa_circ_0090923在前列腺癌中的表达及其对前列腺癌细胞增殖和迁移的调控[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 276-283.
[10] 余慧, 王静, 杜丹, 杨帆. 下调miR-301a-3p抑制人卵巢颗粒KGN细胞增殖和诱导凋亡的机制研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 137-143.
[11] 刘燕, 叶亚萍, 郑艳莉. 干扰LINC00466通过miR-493-3p/MIF抑制子宫内膜癌RL95-2细胞恶性生物学行为[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 151-158.
[12] 邓世栋, 刘凌志, 郭大勇, 王超, 黄忠欣, 张晖辉. 沉默SNHG1基因对膀胱癌细胞增殖、凋亡、迁移和铁死亡的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 804-811.
[13] 王苏贵, 皇立媛, 姜福金, 吴自余, 张先云, 李强, 严大理. 异质性细胞核核糖蛋白A2B1在前列腺癌中的作用及其靶向中药活性成分筛选研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 731-736.
[14] 杨思雨, 杨晶晶, 张平, 刘巧, 吴杰, 黄香金, 王怡洁, 付景云. 瘦素通过α1肾上腺素受体介导CaMKKβ-AMPKα信号通路在GT1-7细胞系中的作用[J]. 中华临床医师杂志(电子版), 2023, 17(05): 569-574.
[15] 方辉, 李菲, 张帆, 魏强, 陈强谱. 外源性瘦素对梗阻性黄疸大鼠肠黏膜增殖的影响[J]. 中华临床医师杂志(电子版), 2023, 17(05): 575-580.
阅读次数
全文


摘要