[1] |
Ackerman MJ. The visible human project [J]. J Biocommun, 1991, 18(2): 14.
|
[2] |
Chung DY, Kang DH, Cho KS, et al. Comparison of stone-free rates following shock wave lithotripsy, percutaneous nephrolithotomy, and retrograde intrarenal surgery for treatment of renal stones: A systematic review and network meta-analysis [J]. PLoS One, 2019, 14(2): e0211316.
|
[3] |
Gandhi KR, Chavan S. Revisiting the morphology of pelvicalyceal system in human cadaveric kidneys with a systematic review of literature [J]. Asian J Urol, 2019, 6(3): 249-255.
|
[4] |
Krishna S, Leckie A, Kielar A, et al. Imaging of Renal Cancer. Semin Ultrasound CT MR[J]. 2020, 41(2): 152-169.
|
[5] |
Bücking TM, Hill ER, Robertson JL, et al. From medical imaging data to 3D printed anatomical models [J]. PLoS One, 2017, 12(5): e0178540
|
[6] |
Sutherland J, Belec J, Sheikh A, et al. Applying Modern Virtual and Augmented Reality Technologies to Medical Images and Models[J]. J Digit Imaging, 2019, 32(1): 38-53.
|
[7] |
Bertolo R, Hung A, Porpiglia F, et al. Systematic review of augmented reality in urological interventions: the evidences of an impact on surgical outcomes are yet to come [J]. World J Urol, 2020, 38(9): 2167-2176.
|
[8] |
辛宁,丁新宇,黄可南, 等. 混合现实技术在医学中的应用 [J]. 中国胸心血管外科临床杂志, 2021, 28(5): 597-602.
|
[9] |
张旭辉,张彬,王东文. 虚拟现实技术在泌尿外科内镜诊疗中的应用现状 [J]. 中国内镜杂志, 2015, 21(9): 966-970.
|
[10] |
Salmi M. Additive manufacturing processes in medical applications [J]. Materials, 2021, 14(1): 191.
|
[11] |
Atalay HA, Canat HL, ülker V, et al. Impact of personalized three-dimensional (3D) printed pelvicalyceal system models on patient information in percutaneous nephrolithotripsy surgery: a pilot study [J]. Int Braz J Urol, 2017, 43(3): 470-475.
|
[12] |
Parkhomenko E, O'Leary M, Safiullah S, et al. Pilot assessment of immersive virtual reality renal models as an educational and preoperative planning tool for percutaneous nephrolithotomy [J]. J Endourol, 2019, 33(4): 283-288.
|
[13] |
von Rundstedt FC, Scovell JM, Agrawal S, et al. Utility of patient-specific silicone renal models for planning and rehearsal of complex tumour resections prior to robot-assisted laparoscopic partial nephrectomy [J]. BJU Int, 2017, 119(4): 598-604.
|
[14] |
黄建锋,吕世栋,胡正飞, 等. 基于UroMedix-3D系统的人体肾脏结构三维重建及其对肾脏手术的指导 [J]. 南方医科大学学报, 2019, 39(5): 614-620.
|
[15] |
Checcucci E, Amparore D, Volpi G, et al. Percutaneous puncture during PCNL: new perspective for the future with virtual imaging guidance [J]. World J Urol, 2022, 40:639-650.
|
[16] |
Macchi V, Picardi EEE, Porzionato A, et al. Integration of anatomical and radiological analysis suggests more segments in the human kidney [J]. Clin Anat, 2019, 32(1): 46-52.
|
[17] |
Graves FT. The anatomy of the intrarenal arteries and its application to segmental resection of the kidney [J]. Br J Surg, 1954, 42(172): 132-139.
|
[18] |
Brehmer M, Beckman MO, Magnusson A. Three-dimensional computed tomography planning improves percutaneous stone surgery [J]. Scand J Urol, 2014, 48(3): 316-23.
|
[19] |
Xu Y, Yuan Y, Cai Y, et al. Use 3D printing technology to enhance stone free rate in single tract percutaneous nephrolithotomy for the treatment of staghorn stones [J]. Urolithiasis, 2019, 48(6): 1-8.
|
[20] |
朱鹤,李宁忱,赵子臣, 等. 基于混合现实引导的经皮肾穿刺肾脏模型的验证 [J]. 中华医学杂志, 2018, 98(24): 1962-1964.
|
[21] |
薛亮,陈泽宇,陈仁富, 等. 混合现实技术在经皮肾镜取石术治疗过程中的应用 [J]. 现代泌尿外科杂志, 2018, 23(6): 433-436.
|
[22] |
Rassweiler-Seyfried MC, Rassweiler JJ, Weiss C, et al. iPad-assisted percutaneous nephrolithotomy (PCNL): a matched pair analysis compared to standard PCNL [J]. World J Urol, 2020, 38(2): 447-453.
|
[23] |
Liatsikos EN, Siablis D, Kagadis GC, et al. Virtual endoscopy: navigation within pelvicaliceal system [J]. J Endourol, 2005, 19(1): 37-40.
|
[24] |
于澄钒,张弋,闫伟,等. 虚拟输尿管镜在辅助输尿管软镜碎石术中的有效性分析[J]. 中华泌尿外科杂志, 2017, 38(3): 206-210.
|
[25] |
Marroig B, Favorito LA, Fortes MA, et al. Lower pole anatomy and mid-renal-zone classification applied to flexible ureteroscopy: experimental study using human three-dimensional endocasts [J]. Surg Radiol Anat, 2015, 37(10): 1243-1249.
|
[26] |
Zhang Y, Yu CF, Zhang JH, et al. Establishment and evaluation of patient-specific virtual ureteroscopy in assisting flexible ureteroscopy for urolithiasis [J]. Surg Innov, 2017, 24(5): 440-445.
|
[27] |
Farcas M, Reynolds LF, Lee JY. Simulation-based Percutaneous Renal Access Training-Evaluating a novel 3D, immersive VR platform [J]. J Endourol, 2021, 35(5): 695-699.
|
[28] |
Ali S, Sirota E, Ali H, et al. Three-dimensionally printed non-biological simulator for percutaneous nephrolithotomy training [J]. Scand J Urol, 2020, 54(4): 349-354.
|
[29] |
George E, Liacouras P, Rybicki FJ, et al. Measuring and establishing the accuracy and reproducibility of 3D printed medical models [J]. Radiographics, 2017, 37(5): 1424-1450.
|
[30] |
Heller N, Isensee F, Maier-Hein KH, et al. The state of the art in kidney and kidney tumor segmentation in contrast-enhanced ct imaging: Results of the kits19 challenge[J]. Med Image Anal, 2021, 67:101821.
|
[31] |
Chan HP, Samala RK, Hadjiiski LM, et al. Deep learning in medical image analysis[J].Adv Exp Med Biol , 2020, 1213, 3-21.
|
[32] |
Weatherspoon K, Smolinski S, Rakita D, et al. Intravenous vs. oral hydration administration for optimal ureteral opacification in computer tomographic urography[J]. Abdom Radiol (NY), 2017, 42(12): 2890-2897.
|
[33] |
李宁,曹志强. 增强现实、混合现实在泌尿外科导航手术中的应用 [J/CD]. 中华腔镜泌尿外科杂志(电子版), 2020, 14(4): 241-245.
|
[34] |
温星桥,祝炜安,王喻, 等. DVPV系统三维影像及虚拟现实导航在泌尿外科复杂手术的应用 [J]. 中华腔镜泌尿外科杂志(电子版), 2020, 14(2): 91-95.
|
[35] |
Sun Z, Liu D. A systematic review of clinical value of three-dimensional printing in renal disease[J]. Quant Imaging Med Surg, 2018, 8(3): 311-325.
|