[1] |
Koehler S, Huber TB. Insights into human kidney function from the study of drosophila[J]. Pediatr Nephrol, 2023, 38(12): 3875-3887.
|
[2] |
van de Leemput J, Wen P, Han Z. Using Drosophila nephrocytes to understand the formation and maintenance of the podocyte slit diaphragm[J]. Front Cell Dev Biol, 2022, 10: 837828.
|
[3] |
Cohen E, Sawyer JK, Peterson NG, et al. Physiology, development, and disease modeling in the drosophila excretory system[J]. Genetics, 2020, 214(2): 235-264.
|
[4] |
Wang S, Ju Y, Gao L, et al. The fruit fly kidney stone models and their application in drug development[J]. Heliyon, 2022, 8(4): e09232.
|
[5] |
Reynolds C J, Turin DR, Romero MF. Transporters and tubule crystals in the insect malpighian tubule[J]. Curr Opin Insect Sci, 2021, 47: 82-89.
|
[6] |
Dow JAT, Krause S A, Herzyk P. Updates on ion and water transport by the malpighian tubule[J]. Curr Opin Insect Sci, 2021, 47: 31-37.
|
[7] |
Rodan AR. The drosophila malpighian tubule as a model for mammalian tubule function[J]. Curr Opin Nephrol Hypertens, 2019, 28(5): 455-464.
|
[8] |
Ali SN, Dayarathna TK, Ali AN, et al. Drosophila melanogaster as a function-based high-throughput screening model for antinephrolithiasis agents in kidney stone patients[J]. Dis Model Mech, 2018, 11(11): dmm035873.
|
[9] |
Ogienko AA, Omelina ES, Bylino OV, et al. Drosophila as a model organism to study basic mechanisms of longevity[J]. Int J Mol Sci, 2022, 23(19): 11244.
|
[10] |
Ugur B, Chen K, Bellen HJ. Drosophila tools and assays for the study of human diseases[J]. Dis Model Mech, 2016, 9(3): 235-244.
|
[11] |
Li H, Janssens J, De Waegeneer M, et al. Fly cell atlas: a single-nucleus transcriptomic atlas of the adult fruit fly[J]. Science, 2022, 375(6584): eabk2432.
|
[12] |
Oriel C, Lasko P. Recent developments in using drosophila as a model for human genetic disease[J]. Int J Mol Sci, 2018, 19(7): 2041.
|
[13] |
Link N, Bellen HJ. Using drosophila to drive the diagnosis and understand the mechanisms of rare human diseases[J]. Development, 2020, 147(21): dev191411.
|
[14] |
Papanikolopoulou K, Mudher A, Skoulakis E. An assessment of the translational relevance of drosophila in drug discovery[J]. Expert Opin Drug Discov, 2019, 14(3): 303-313.
|
[15] |
Dow JAT, Simons M, Romero MF. Drosophila melanogaster: a simple genetic model of kidney structure, function and disease[J]. Nat Rev Nephrol, 2022, 18(7): 417-434.
|
[16] |
Di Pietro F, Herszterg S, Huang A, et al. Rapid and robust optogenetic control of gene expression in Drosophila[J]. Dev Cell, 2021, 56(24): 3393-3404.e7.
|
[17] |
韩善福, 王宁, 徐华, 等. 果蝇模型在肾结石研究中的优势与应用前景[J]. 临床泌尿外科杂志, 2018, 33(7): 578-581, 585.
|
[18] |
Al KF, Daisley BA, Chanyi RM, et al. Oxalate-degrading bacillus subtilis mitigates urolithiasis in a drosophila melanogaster model[J]. mSphere, 2020, 5(5): e00498-e00420.
|
[19] |
Han S, Zhao C, Pokhrel G, et al. Hydroxycitric acid tripotassium inhibits calcium oxalate crystal formation in the drosophila melanogaster model of hyperoxaluria[J]. Med Sci Monit, 2019, 25: 3662-3667.
|
[20] |
Lu Y, Wu Z, Du Z, et al. The anti-urolithiasis activity and safety of strangury-relieving herbs: a comparative study based on fruit fly kidney stone model[J]. J Ethnopharmacol, 2024, 326: 117968.
|
[21] |
Akouris PP, Chmiel JA, Stuivenberg GA, et al. Osteopontin phosphopeptide mitigates calcium oxalate stone formation in a drosophila melanogaster model[J]. Urolithiasis, 2022, 51(1): 19.
|
[22] |
Sun P, Liao SG, Yang RQ, et al. Aspidopterys obcordata vine inulin fructan affects urolithiasis by modifying calcium oxalate crystallization[J]. Carbohydr Polym, 2022, 294: 119777.
|
[23] |
Chen SJ, Dalanbaatar S, Chen HY, et al. Astragalus membranaceus extract prevents calcium oxalate crystallization and extends lifespan in a Drosophila urolithiasis model[J]. Life, 2022, 12(8): 1250.
|
[24] |
Chi T, Kim MS, Lang S, et al. A drosophila model identifies a critical role for zinc in mineralization for kidney stone disease[J]. PLoS One, 2015, 10(5): e0124150.
|
[25] |
Ghimire S, Terhzaz S, Cabrero P, et al. Targeted renal knockdown of Na+/H+ exchanger regulatory factor Sip1 produces uric acid nephrolithiasis in Drosophila[J]. Am J Physiol Renal Physiol, 2019, 317(4): F930-F940.
|
[26] |
Lang S, Hilsabeck TA, Wilson KA, et al. A conserved role of the insulin-like signaling pathway in diet-dependent uric acid pathologies in drosophila melanogaster[J]. PLoS Genet, 2019, 15(8): e1008318.
|
[27] |
Fan QX, Gong SQ, Hong XZ, et al. Clinical-grade garcinia cambogia extract dissolves calcium oxalate crystals in drosophila kidney stone models[J]. Eur Rev Med Pharmacol Sci, 2020, 24(11): 6434-6445.
|
[28] |
Branco AJ, Vattamparambil AS, Landry GM. Lead (Pb2+)-induced calcium oxalate crystallization ex vivo is ameliorated via inositol 1, 4, 5-trisphosphate receptor (InsP3R) knockdown in a drosophila melanogaster model of nephrolithiasis[J]. Environ Toxicol Pharmacol, 2021, 87: 103695.
|
[29] |
Rose E, Lee D, Xiao E, et al. Endocrine regulation of MFS2 by branchless controls phosphate excretion and stone formation in drosophila renal tubules[J]. Sci Rep, 2019, 9(1): 8798.
|
[30] |
Knauf F, Preisig P A. Drosophila: a fruitful model for calcium oxalate nephrolithiasis?[J]. Kidney Int, 2011, 80(4): 327-329.
|
[31] |
Farina P, Bedini S, Conti B. Multiple functions of malpighian tubules in insects: a review[J]. Insects, 2022, 13(11): 1001.
|
[32] |
Fargue S, Acquaviva Bourdain C. Primary hyperoxaluria type 1: pathophysiology and genetics[J]. Clin Kidney J, 2022, 15(Suppl 1): i4-i8.
|
[33] |
Singh P, Harris PC, Sas DJ, et al. The genetics of kidney stone disease and nephrocalcinosis[J]. Nat Rev Nephrol, 2022, 18(4): 224-240.
|