切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2024, Vol. 18 ›› Issue (03) : 214 -218. doi: 10.3877/cma.j.issn.1674-3253.2024.03.003

专家论坛

果蝇模型在肾结石研究中的应用
唐瑞政1, 李舒珏2, 吴文起1,()   
  1. 1. 510260 广州医科大学附属第二医院泌尿外科;510230 广州,广东省泌尿外科重点实验室
    2. 510230 广州,广东省泌尿外科重点实验室;510120 广州医科大学附属第一医院泌尿外科
  • 收稿日期:2023-04-24 出版日期:2024-06-01
  • 通信作者: 吴文起
  • 基金资助:
    国家自然科学基金面上项目(82070719,82270827); 广州市科技计划项目(202002030042,202102010182); 广州市教育局创新团队科研项目(202032840)

The application of drosophila model in the research of kidney stones

Ruizheng Tang1, Shujue Li2, Wenqi Wu1,()   

  1. 1. Department of Urology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China; Guangdong Provincial Key Laboratory of Urology, Guangzhou 510230, China
    2. Guangdong Provincial Key Laboratory of Urology, Guangzhou 510230, China; Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
  • Received:2023-04-24 Published:2024-06-01
  • Corresponding author: Wenqi Wu
引用本文:

唐瑞政, 李舒珏, 吴文起. 果蝇模型在肾结石研究中的应用[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 214-218.

Ruizheng Tang, Shujue Li, Wenqi Wu. The application of drosophila model in the research of kidney stones[J]. Chinese Journal of Endourology(Electronic Edition), 2024, 18(03): 214-218.

肾结石是泌尿外科的重点研究领域,目前肾结石的动物模型研究多使用小鼠、大鼠和猪等哺乳动物等模型,其具有技术成熟、解剖结构与人类相似等优势,可以很好地模拟人类结石形成的过程。但哺乳动物模型存在饲养周期长、成本高、伦理审查繁琐、生理和遗传机制复杂等缺陷,因此,寻找一个更加简单、经济、易行的动物模型对肾结石的研究具有重要意义。果蝇模型是生物医药领域常用的动物模型之一,其具有成本较低、实验周期短、易于观察、遗传可操作性强等独特优势。近年来,已有多项研究使用果蝇作为肾结石模型运用于肾结石研究中,并取得了良好的效果,证明果蝇肾结石模型具有广泛的应用前景。

Kidney stone is a key aspect of research in Urology. Currently, animal models for kidney stone research predominantly employ mammals such as mice, rats, and pigs due to their technical maturity and anatomical resemblance to humans, facilitating a faithful emulation of the human stone formation process. However, mammalian models are plagued by drawbacks such as long breeding cycles, high costs, cumbersome ethical reviews, and the complexity of physiological and genetic mechanisms. Consequently, the quest for a simpler, more economical, and feasible animal model holds significant importance for kidney stone research. Drosophila model stands out as one of the commonly utilized animal models in the field of biomedicine, which has the advantages of lower costs, shorter experimental periods, ease of observation, and strong genetic manipulability. Recently, many studies used drosophila kidney stone model in kidney stone researches, yielding promising results and underscoring the broad application prospects of drosophila kidney stone model.

[1]
Koehler S, Huber TB. Insights into human kidney function from the study of drosophila[J]. Pediatr Nephrol, 2023, 38(12): 3875-3887.
[2]
van de Leemput J, Wen P, Han Z. Using Drosophila nephrocytes to understand the formation and maintenance of the podocyte slit diaphragm[J]. Front Cell Dev Biol, 2022, 10: 837828.
[3]
Cohen E, Sawyer JK, Peterson NG, et al. Physiology, development, and disease modeling in the drosophila excretory system[J]. Genetics, 2020, 214(2): 235-264.
[4]
Wang S, Ju Y, Gao L, et al. The fruit fly kidney stone models and their application in drug development[J]. Heliyon, 2022, 8(4): e09232.
[5]
Reynolds C J, Turin DR, Romero MF. Transporters and tubule crystals in the insect malpighian tubule[J]. Curr Opin Insect Sci, 2021, 47: 82-89.
[6]
Dow JAT, Krause S A, Herzyk P. Updates on ion and water transport by the malpighian tubule[J]. Curr Opin Insect Sci, 2021, 47: 31-37.
[7]
Rodan AR. The drosophila malpighian tubule as a model for mammalian tubule function[J]. Curr Opin Nephrol Hypertens, 2019, 28(5): 455-464.
[8]
Ali SN, Dayarathna TK, Ali AN, et al. Drosophila melanogaster as a function-based high-throughput screening model for antinephrolithiasis agents in kidney stone patients[J]. Dis Model Mech, 2018, 11(11): dmm035873.
[9]
Ogienko AA, Omelina ES, Bylino OV, et al. Drosophila as a model organism to study basic mechanisms of longevity[J]. Int J Mol Sci, 2022, 23(19): 11244.
[10]
Ugur B, Chen K, Bellen HJ. Drosophila tools and assays for the study of human diseases[J]. Dis Model Mech, 2016, 9(3): 235-244.
[11]
Li H, Janssens J, De Waegeneer M, et al. Fly cell atlas: a single-nucleus transcriptomic atlas of the adult fruit fly[J]. Science, 2022, 375(6584): eabk2432.
[12]
Oriel C, Lasko P. Recent developments in using drosophila as a model for human genetic disease[J]. Int J Mol Sci, 2018, 19(7): 2041.
[13]
Link N, Bellen HJ. Using drosophila to drive the diagnosis and understand the mechanisms of rare human diseases[J]. Development, 2020, 147(21): dev191411.
[14]
Papanikolopoulou K, Mudher A, Skoulakis E. An assessment of the translational relevance of drosophila in drug discovery[J]. Expert Opin Drug Discov, 2019, 14(3): 303-313.
[15]
Dow JAT, Simons M, Romero MF. Drosophila melanogaster: a simple genetic model of kidney structure, function and disease[J]. Nat Rev Nephrol, 2022, 18(7): 417-434.
[16]
Di Pietro F, Herszterg S, Huang A, et al. Rapid and robust optogenetic control of gene expression in Drosophila[J]. Dev Cell, 2021, 56(24): 3393-3404.e7.
[17]
韩善福, 王宁, 徐华, 等. 果蝇模型在肾结石研究中的优势与应用前景[J]. 临床泌尿外科杂志, 2018, 33(7): 578-581, 585.
[18]
Al KF, Daisley BA, Chanyi RM, et al. Oxalate-degrading bacillus subtilis mitigates urolithiasis in a drosophila melanogaster model[J]. mSphere, 2020, 5(5): e00498-e00420.
[19]
Han S, Zhao C, Pokhrel G, et al. Hydroxycitric acid tripotassium inhibits calcium oxalate crystal formation in the drosophila melanogaster model of hyperoxaluria[J]. Med Sci Monit, 2019, 25: 3662-3667.
[20]
Lu Y, Wu Z, Du Z, et al. The anti-urolithiasis activity and safety of strangury-relieving herbs: a comparative study based on fruit fly kidney stone model[J]. J Ethnopharmacol, 2024, 326: 117968.
[21]
Akouris PP, Chmiel JA, Stuivenberg GA, et al. Osteopontin phosphopeptide mitigates calcium oxalate stone formation in a drosophila melanogaster model[J]. Urolithiasis, 2022, 51(1): 19.
[22]
Sun P, Liao SG, Yang RQ, et al. Aspidopterys obcordata vine inulin fructan affects urolithiasis by modifying calcium oxalate crystallization[J]. Carbohydr Polym, 2022, 294: 119777.
[23]
Chen SJ, Dalanbaatar S, Chen HY, et al. Astragalus membranaceus extract prevents calcium oxalate crystallization and extends lifespan in a Drosophila urolithiasis model[J]. Life, 2022, 12(8): 1250.
[24]
Chi T, Kim MS, Lang S, et al. A drosophila model identifies a critical role for zinc in mineralization for kidney stone disease[J]. PLoS One, 2015, 10(5): e0124150.
[25]
Ghimire S, Terhzaz S, Cabrero P, et al. Targeted renal knockdown of Na+/H+ exchanger regulatory factor Sip1 produces uric acid nephrolithiasis in Drosophila[J]. Am J Physiol Renal Physiol, 2019, 317(4): F930-F940.
[26]
Lang S, Hilsabeck TA, Wilson KA, et al. A conserved role of the insulin-like signaling pathway in diet-dependent uric acid pathologies in drosophila melanogaster[J]. PLoS Genet, 2019, 15(8): e1008318.
[27]
Fan QX, Gong SQ, Hong XZ, et al. Clinical-grade garcinia cambogia extract dissolves calcium oxalate crystals in drosophila kidney stone models[J]. Eur Rev Med Pharmacol Sci, 2020, 24(11): 6434-6445.
[28]
Branco AJ, Vattamparambil AS, Landry GM. Lead (Pb2+)-induced calcium oxalate crystallization ex vivo is ameliorated via inositol 1, 4, 5-trisphosphate receptor (InsP3R) knockdown in a drosophila melanogaster model of nephrolithiasis[J]. Environ Toxicol Pharmacol, 2021, 87: 103695.
[29]
Rose E, Lee D, Xiao E, et al. Endocrine regulation of MFS2 by branchless controls phosphate excretion and stone formation in drosophila renal tubules[J]. Sci Rep, 2019, 9(1): 8798.
[30]
Knauf F, Preisig P A. Drosophila: a fruitful model for calcium oxalate nephrolithiasis?[J]. Kidney Int, 2011, 80(4): 327-329.
[31]
Farina P, Bedini S, Conti B. Multiple functions of malpighian tubules in insects: a review[J]. Insects, 2022, 13(11): 1001.
[32]
Fargue S, Acquaviva Bourdain C. Primary hyperoxaluria type 1: pathophysiology and genetics[J]. Clin Kidney J, 2022, 15(Suppl 1): i4-i8.
[33]
Singh P, Harris PC, Sas DJ, et al. The genetics of kidney stone disease and nephrocalcinosis[J]. Nat Rev Nephrol, 2022, 18(4): 224-240.
[1] 刘逸群, 朱家安, 熊钰, 辛雨薇, 曲琳琳, 杨力, 李文雪, 田辉. 超声造影定量分析大鼠肝急性移植物抗宿主病的实验研究[J]. 中华医学超声杂志(电子版), 2024, 21(01): 75-81.
[2] 郑鹏, 吴赛萍, 谢秀璋, 史庆丰. 术前预测感染性肾结石列线图模型的构建及验证[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 299-306.
[3] 张飞, 许陈祥, 邵涛, 王伟, 周红庆. 二期局麻下应用膀胱软镜处理复杂性肾结石经皮肾镜术后残石的研究[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 69-73.
[4] 张礼刚, 邹志辉, 许顺, 蔡可可, 胡永涛, 梁朝朝. 酒精对慢性非细菌性前列腺炎中T淋巴细胞变化的影响研究[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 74-81.
[5] 曹智, 朱希望, 王尉, 张辉, 杨成林, 张小明. 经皮肾镜碎石取石术中不同肾盂内压力与围术期并发症相关性研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 616-620.
[6] 方道成, 胡媛媛. 钙和维生素D与肾结石形成关系的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 653-656.
[7] 张文涛, 陈俊明, 秦海生, 杨胜进, 余朝辉, 白冰, 王世洋, 段彩莲, 王震. 4.8 F可视肾镜在飞行人员肾脏小结石中的临床应用[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 593-596.
[8] 徐哲, 罗杰, 吴强, 李忠, 王晓伟, 郑硕, 郝晓东, 王照. 腹主动脉钙化患者肾结石成分特点及危险因素分析[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 481-485.
[9] 周川鹏, 杨浩, 魏微阳, 王奇, 黄亚强. 微创与标准通道经皮肾镜治疗肾结石合并肾功能不全的对比研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 470-475.
[10] 张磊, 米洋, 王昌喜, 李曜行, 王小东, 牛旭东, 王靖宇. 一次性输尿管软镜通路鞘两种置入深度的临床研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 486-489.
[11] 李青霖, 宋仁杰, 周飞虎. 一种重型劳力性热射病相关急性肾损伤小鼠模型的建立与探讨[J]. 中华肾病研究电子杂志, 2023, 12(05): 265-270.
[12] 陈业煌, 陈恺钦, 薛亮, 吴箭午, 黄预备, 魏梁锋, 曾炳香, 王守森. 改良大鼠挫伤型脊髓损伤模型的制备与评估[J]. 中华神经创伤外科电子杂志, 2023, 09(06): 325-332.
[13] 初晨宇, 徐强, 饶军华, 李岳锋. 眶上锁孔入路手术建立食蟹猴大脑中动脉闭塞模型[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(01): 8-13.
[14] 张曦才, 曹先德. 经皮肾镜取石术治疗无积水肾结石中皮肾通道建立的应用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 911-915.
[15] 李世凯, 梁佳, 何艳艳, 于毅, 李天晓, 常金龙, 贺迎坤. 兔颈动脉粥样硬化性狭窄模型在介入治疗的应用进展[J]. 中华介入放射学电子杂志, 2023, 11(04): 357-362.
阅读次数
全文


摘要