切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2022, Vol. 16 ›› Issue (05) : 476 -480. doi: 10.3877/cma.j.issn.1674-3253.2022.05.223

综述

预测前列腺癌淋巴结转移的研究进展
黄广义1, 陈征1, 秦晓平1, 卓育敏1,()   
  1. 1. 510630 广州,暨南大学附属第一医院,泌尿外科
  • 收稿日期:2021-09-26 出版日期:2022-10-01
  • 通信作者: 卓育敏
  • 基金资助:
    国家自然科学基金青年项目(81902615); 暨南大学附属第一医院博士后科研启动项目(809011); 广东省青年优秀人才国际培养计划博士后项目(2019); 领航专科建设专项-暨南大学附属第一医院(711006); 广东省科技计划项目(2020A1414010348)

Progress in predicting lymph node metastasis of prostate cancer

Guangyi Huang1, Zheng Chen1, Xiaoping Qin1   

  • Received:2021-09-26 Published:2022-10-01
引用本文:

黄广义, 陈征, 秦晓平, 卓育敏. 预测前列腺癌淋巴结转移的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2022, 16(05): 476-480.

Guangyi Huang, Zheng Chen, Xiaoping Qin. Progress in predicting lymph node metastasis of prostate cancer[J]. Chinese Journal of Endourology(Electronic Edition), 2022, 16(05): 476-480.

前列腺癌(prostate cancer,PCa)是欧美地区男性发病率及死亡率均排第二位的恶性肿瘤[1]。近年来我国PCa发病率及死亡率呈逐年增长趋势[2]。研究发现PCa转移是导致患者预后较差的重要因素[3]。众所周知,转移性PCa中以淋巴结转移最为常见。盆腔淋巴结清扫(pelvic lymph node dissection,PLND)是诊断PCa淋巴结转移的"金标准",但目前PLND的适应证、范围和患者获益程度仍存在较大争议[4]。术前明确诊断PCa淋巴结转移有助于患者准确地分期及选择最佳的治疗方案。如何在前列腺癌根治术(radical prostatectomy,RP)前准确判断是否有淋巴结转移及转移范围是临床工作中的重点和难点。前列腺特异性抗原(prostate specific antigen,PSA)、Gleason评分、临床分期、前列腺穿刺阳性针数及其百分比、前列腺特异性抗原密度(PSA density,PSAD)、前列腺健康指数(prostate health index,PHI)、体质量指数(body mass index,BMI)、多参数磁共振成像(multiparametric magnetic resonance Imaging,mpMRI)、前列腺影像和数据系统(prostate imaging reporting and data system,PI-RADS)评分、前列腺特异性膜抗原正电子发射断层扫描成像(prostate-specific membrane antigen positron-emission tomography,PSMA PET-CT)等临床指标;MSKCC、Briganti 2012、Partin 2016、Yale、Briganti 2017和Briganti 2019等列线图模型;17-gene Oncotype DX前列腺基因组评分(genomic prostate score,GPS)、塌陷反应调节蛋白4(collapsin response mediator proteins,CRMP4)甲基化、99mTc硫胶体、光学示踪剂如吲哚菁绿(indocyanine green,ICG)、混合示踪剂等新技术均在预测PCa淋巴结转移中有相关报道。本研究系统总结了术前预测PCa淋巴结转移的各种参数及其进展。

[1]
Siegel RL, Miller KD, Fuchs HE, et al. Cancer Statistics, 2021 [J]. CA Cancer J Clin, 2021, 71(1): 7-33.
[2]
李星, 曾晓勇. 中国前列腺癌流行病学研究进展 [J]. 肿瘤防治研究, 2021, 48(1): 98-102.
[3]
Miki J, Egawa S. The role of lymph node dissection in the management of prostate cancer [J]. Int J Clin Oncol, 2011, 16(3): 195-202.
[4]
Lestingi JFP, Guglielmetti GB, Trinh QD, et al. Extended versus limited pelvic lymph node dissection during radical prostatectomy for intermediate- and high-risk prostate cancer: early oncological outcomes from a randomized phase 3 trial [J]. Eur Urol, 2021, 79(5): 595-604.
[5]
Heidenreich A, Ohlmann CH, Polyakov S. Anatomical extent of pelvic lymphadenectomy in patients undergoing radical prostatectomy [J]. Eur Urol, 2007, 52(1): 29-37.
[6]
Mattei A, Fuechsel FG, Bhatta Dhar N, et al. The template of the primary lymphatic landing sites of the prostate should be revisited: results of a multimodality mapping study [J]. Eur Urol, 2008, 53(1): 118-125.
[7]
Joniau S, Van den Bergh L, Lerut E, et al. Mapping of pelvic lymph node metastases in prostate cancer [J]. Eur Urol, 2013, 63(3): 450-458.
[8]
Sanda MG, Cadeddu JA, Kirkby E, et al. Clinically localized prostate cancer: aua/astro/suo guideline. part ii: recommended approaches and details of specific care options[J]. J Urol, 2018, 199(4): 990-997.
[9]
Mottet N, van den Bergh RCN, Briers E, et al. EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer-2020 update. Part 1: screening, diagnosis, and local treatment with curative intent[J]. Eur Urol, 2021, 79(2): 243-262.
[10]
Gandaglia G, Ploussard G, Valerio M, et al. A novel nomogram to identify candidates for extended pelvic lymph node dissection among patients with clinically localized prostate cancer diagnosed with magnetic resonance imaging-targeted and systematic biopsies [J]. Eur Urol, 2019, 75(3): 506-514.
[11]
Leyh-Bannurah S R, Budaus L, Pompe R, et al. North american population-based validation of the national comprehensive cancer network practice guideline recommendation of pelvic lymphadenectomy in contemporary prostate cancer [J]. Prostate, 2017, 77(5): 542-548.
[12]
Fossati N, Willemse PM, Van den Broeck T, et al. The benefits and harms of different extents of lymph node dissection during radical prostatectomy for prostate cancer: a systematic review [J]. Eur Urol, 2017, 72(1): 84-109.
[13]
Tafuri A, Amigoni N, Rizzetto R, et al. Obesity strongly predicts clinically undetected multiple lymph node metastases in intermediate- and high-risk prostate cancer patients who underwent robot assisted radical prostatectomy and extended lymph node dissection [J]. Int Urol Nephrol, 2020, 52(11): 2097-2105.
[14]
Arnold M, Leitzmann M, Freisling H, et al. Obesity and cancer: An update of the global impact[J]. Cancer Epidemiol, 2016, 41: 8-15.
[15]
Porcaro A, Tafuri A, Sebben M, et al. High body mass index predicts multiple prostate cancer lymph node metastases after radical prostatectomy and extended pelvic lymph node dissection[J]. Asian J Androl, 2020, 22(3): 323-329.
[16]
Arai Y, Yoshiki T, Yamabe H, et al. Value of prostate-specific antigen measurements in predicting lymph node involvement in prostatic cancer [J]. Urol Int, 1990, 45(6): 356-360.
[17]
Briganti A, Karakiewicz PI, Chun FK, et al. Obesity does not increase the risk of lymph node metastases in patients with clinically localized prostate cancer undergoing radical prostatectomy and extended pelvic lymph node dissection [J]. Int J Urol, 2009, 16(8): 676-681.
[18]
Yiakoumos T, Kälble T, Rausch S. Prostate-specific antigen density as a parameter for the prediction of positive lymph nodes at radical prostatectomy [J]. Urol Ann, 2015, 7(4): 433-437.
[19]
Nandakumar V, Bornhorst JA, Algeciras-Schimnich A. Evaluation of clinical performance for the detection of prostate cancer in routine clinical practice[J]. Ann Clin Lab Sci, 2021, 51(1): 3-11.
[20]
Fossati N, Buffi NM, Haese A, et al. Preoperative prostate-specific antigen isoform p2psa and its derivatives, %p2psa and prostate health index, predict pathologic outcomes in patients undergoing radical prostatectomy for prostate cancer: results from a multicentric european prospective study[J]. Eur Urol, 2015, 68(1): 132-138.
[21]
Schumacher MC, Burkhard FC, Thalmann GN, et al. Is pelvic lymph node dissection necessary in patients with a serum PSA<10 ng/ml undergoing radical prostatectomy for prostate cancer? [J]. Eur Urol, 2006, 50(2): 272-279.
[22]
Wenger H, Weiner AB, Razmaria A, et al. Risk of lymph node metastases in pathological gleason score≤6 prostate adenocarcinoma: Analysis of institutional and population-based databases [J]. Urol Oncol, 2017, 35(1): 31. e1-31. e6.
[23]
Daugherty M, Sedaghatpour D, Bratslavsky G, et al. Is pelvic lymph node dissection necessary in patients with biopsy proven Gleason 6 prostate cancer? - analysis of the SEER database[J]. Can J Urol, 2018, 25(4): 9414-9420.
[24]
Porcaro AB, de Luyk N, Corsi P, et al. Clinical factors predicting and stratifying the risk of lymph node invasion in localized prostate cancer[J]. Urol Int, 2017, 99(2): 207-214.
[25]
Heidenreich A, Pfister D, Thuer D, et al. Percentage of positive biopsies predicts lymph node involvement in men with low-risk prostate cancer undergoing radical prostatectomy and extended pelvic lymphadenectomy [J]. BJU Int, 2011, 107(2): 220-225.
[26]
Hövels AM, Heesakkers RAM, Adang EM, et al. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis [J]. Clinical Radiology, 2008, 63(4): 387-395.
[27]
Peabody H, Lane BR, Qi J, et al. Limitations of abdominopelvic CT and multiparametric MR imaging for detection of lymph node metastases prior to radical prostatectomy [J]. World J Urol, 2021, 39(3): 779-785.
[28]
Klingenberg S, Jochumsen MR, Ulhoi BP, et al. (68)Ga-PSMA PET/CT for primary lymph node and distant metastasis nm staging of high-risk prostate cancer[J]. J Nucl Med, 2021, 62(2): 214-220.
[29]
Jansen BHE, Bodar YJL, Zwezerijnen GJC, et al. Pelvic lymph-node staging with (18)F-DCFPyL PET/CT prior to extended pelvic lymph-node dissection in primary prostate cancer - the SALT trial [J]. Eur J Nucl Med Mol Imaging, 2021, 48(2): 509-520.
[30]
Selnaes KM, Kruger-Stokke B, Elschot M, et al. (18)F-Fluciclovine PET/MRI for preoperative lymph node staging in high-risk prostate cancer patients[J]. Eur Radiol, 2018, 28(8): 3151-3159.
[31]
Xu N, Ke ZB, Chen YH, et al. Risk factors for pathologically confirmed lymph nodes metastasis in patients with clinical t2n0m0 stage prostate cancer [J]. Front Oncol, 2020, 10: 1547.
[32]
Huang C, Song G, Wang H, et al. Preoperative PI-RADS Version 2 scores helps improve accuracy of clinical nomograms for predicting pelvic lymph node metastasis at radical prostatectomy [J]. Prostate Cancer Prostatic Dis, 2020, 23(1): 116-126.
[33]
Cimino S, Reale G, Castelli T, et al. Comparison between Briganti, Partin and MSKCC tools in predicting positive lymph nodes in prostate cancer: a systematic review and meta-analysis [J]. Scand J Urol, 2017, 51(5): 345-350.
[34]
Oderda M, Diamand R, Albisinni S, et al. Indications for and complications of pelvic lymph node dissection in prostate cancer: accuracy of available nomograms for the prediction of lymph node invasion [J]. BJU Int, 2021, 127(3): 318-325.
[35]
Gao X, Li LY, Rassler J, et al. Prospective study of crmp4 promoter methylation in prostate biopsies as a predictor for lymph node metastases[J]. J Natl Cancer Inst, 2017, 109(6):1-9.
[36]
Tsaur I, Hennenlotter J, Oppermann E, et al. PCA3 and PSA gene activity correlates with the true tumor cell burden in prostate cancer lymph node metastases [J]. Cancer Biomark, 2015, 15(3): 311-316.
[37]
Heck MM, Retz M, Bandur M, et al. Molecular lymph node status for prognostic stratification of prostate cancer patients undergoing radical prostatectomy with extended pelvic lymph node dissection [J]. Clin Cancer Res, 2018, 24(10): 2342-2349.
[38]
van der Poel HG, Wit EM, Acar C, et al. Sentinel node biopsy for prostate cancer: report from a consensus panel meeting [J]. BJU Int, 2017, 120(2): 204-211.
[39]
Mazzone E, Dell'Oglio P, Grivas N, et al. Diagnostic value, oncological outcomes and safety profile of image-guided surgery technologies during robot-assisted lymph node dissection with sentinel node biopsy for prostate cancer [J]. J Nucl Med, 2021, 62(10): 1363-1371.
[40]
Harke NN, Godes M, Wagner C, et al. Fluorescence-supported lymphography and extended pelvic lymph node dissection in robot-assisted radical prostatectomy: a prospective, randomized trial [J]. World J Urol, 2018, 36(11): 1817-1823.
[41]
Shimbo M, Endo F, Matsushita K, et al. Impact of indocyanine green-guided extended pelvic lymph node dissection during robot-assisted radical prostatectomy [J]. Int J Urol, 2020, 27(10): 845-850.
[42]
Claps F, Ramirez-Backhaus M, Mir Maresma MC, et al. Indocyanine green guidance improves the efficiency of extended pelvic lymph node dissection during laparoscopic radical prostatectomy [J]. Int J Urol, 2021, 28(5): 566-572.
[43]
Grivas N, Wit E, Tillier C, et al. Validation and head-to-head comparison of three nomograms predicting probability of lymph node invasion of prostate cancer in patients undergoing extended and/or sentinel lymph node dissection [J]. Eur J Nucl Med Mol Imaging, 2017, 44(13): 2213-2226.
[44]
Winter A, Engels S, Goos P, et al. Accuracy of magnetometer-guided sentinel lymphadenectomy after intraprostatic injection of superparamagnetic iron oxide nanoparticles in prostate cancer: the sentimag pro Ii study [J]. Cancers (Basel), 2019, 12(1): 32.
[45]
Hinsenveld FJ, Wit EMK, van Leeuwen PJ, et al. Prostate-specific membrane antigen pet/ct combined with sentinel node biopsy for primary lymph node staging in prostate cancer [J]. J Nucl Med, 2020, 61(4): 540-545.
[46]
Van Den Eeden SK, Lu R, Zhang N, et al. A Biopsy-based 17-gene genomic prostate score as a predictor of metastases and prostate cancer death in surgically treated men with clinically localized disease [J]. Eur Urol, 2018, 73(1): 129-138.
[47]
Eggener S, Karsh LI, Richardson T, et al. A 17-gene panel for prediction of adverse prostate cancer pathologic features: prospective clinical validation and utility[J]. Urology, 2019, 126: 76-82.
[48]
Covas Moschovas M, Chew C, Bhat S, et al. Association Between Oncotype DX Genomic Prostate Score and Adverse Tumor Pathology After Radical Prostatectomy [J]. Eur Urol Focus, 2022, 8(2): 418-424.
[49]
Zhu LF, Song LD, Xu Q, et al. Highly expressed long non-coding rna fezf1-as1 promotes cells proliferation and metastasis through notch signaling in prostate cancer[J]. Eur Rev Med Pharmacol Sci, 2019, 23(12): 5122-5132.
[50]
Xia Q, Li J, Yang Z, et al. Long non-coding RNA small nucleolar RNA host gene 7 expression level in prostate cancer tissues predicts the prognosis of patients with prostate cancer[J]. Medicine (Baltimore), 2020, 99(7): e18993.
[1] 方晔, 谢晓红, 罗辉. 品管圈在提高前列腺癌穿刺检出率中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(07): 722-727.
[2] 孙帼, 谢迎东, 徐超丽, 杨斌. 超声联合临床特征的列线图模型预测甲状腺乳头状癌淋巴结转移的价值[J]. 中华医学超声杂志(电子版), 2023, 20(07): 734-742.
[3] 陈启阳, 刘玉江, 刘金苹, 谭小蕖, 钱林学, 胡向东. 基于超声造影的预测模型对甲状腺乳头状癌颈中央区淋巴结转移的诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(04): 442-448.
[4] 李素娟, 丁文波, 武心萍, 邓学东. 被膜侵犯的甲状腺微小乳头状癌发生颈部淋巴结转移的超声相关危险因素分析[J]. 中华医学超声杂志(电子版), 2023, 20(04): 455-461.
[5] 刘星辰, 刘娟, 魏宝宝, 刘洁, 刘辉. XIAP与XAF1异常表达与卵巢癌的相关性分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 419-427.
[6] 李雄雄, 周灿, 徐婷, 任予, 尚进. 初诊导管原位癌伴微浸润腋窝淋巴结转移率的Meta分析[J]. 中华普通外科学文献(电子版), 2023, 17(06): 466-474.
[7] 樊逸隽, 杨枫, 王玮, 殷鹤英, 刘俊. 喉前淋巴结转移对甲状腺乳头状癌诊疗价值的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(04): 306-310.
[8] 徐成, 王璐璐, 王少华. 洗脱液甲状腺球蛋白在甲状腺乳头状癌转移淋巴结中的应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 701-704.
[9] 袁育韬, 邢金琳, 谢克飞, 殷凯. CT征象及BRAFV600E基因突变与甲状腺乳头状癌中央区淋巴结转移的相关性[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 611-614.
[10] 李全喜, 唐辉军, 张健生, 杨飞. 基于MUSE-DWI与SS-DWI技术在前列腺癌图像中的对比研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 553-557.
[11] 梅津熠, 王燕, 瞿旻, 董振阳, 周增辉, 沈显琦, 李嘉伦, 高旭. 机器人前列腺癌根治术中"膀胱外中叶"的处理[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 429-433.
[12] 穆靖军, 马增妮, 曹晓明. 临床局限性前列腺癌包膜外侵犯的危险因素分析[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 326-331.
[13] 李全喜, 唐辉军, 唐友杰, 杨飞. DISCO成像技术在前列腺增生与前列腺癌鉴别诊断中的应用价值[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 332-335.
[14] 王邦郁, 陈晓鹏, 唐国军, 王佳妮. 尿液细胞外囊泡circRNA分类器对高级别前列腺癌诊断价值的初步研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 339-342.
[15] 王苏贵, 皇立媛, 姜福金, 吴自余, 张先云, 李强, 严大理. 异质性细胞核核糖蛋白A2B1在前列腺癌中的作用及其靶向中药活性成分筛选研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 731-736.
阅读次数
全文


摘要