切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2025, Vol. 19 ›› Issue (04) : 498 -507. doi: 10.3877/cma.j.issn.1674-3253.2025.04.017

实验研究

甘草酸对尿源性脓毒症相关急性肾损伤的作用机制研究
薛国强1,2, 赵立明2, 刘学军2, 任玉林2, 晏发隆2, 杨晨2, 杨嘉祺2, 王永翔2, 康印东1,()   
  1. 1730050 甘肃兰州,解放军联勤保障部队第九四〇医院泌尿外科
    2730000 兰州,甘肃省第二人民医院泌尿外科
  • 收稿日期:2024-07-19 出版日期:2025-08-01
  • 通信作者: 康印东
  • 基金资助:
    兰州市科技发展指导性计划项目(2023-ZD-3); 甘肃省卫生健康行业科研计划项目(GSWSKY2022-37,GWGL2011-18)

Study on the mechanism of glycyrrhizic acid on acute renal injury caused by urogenic sepsis

Guoqiang Xue1,2, Liming Zhao2, Xuejun Liu2, Yulin Ren2, Falong Yan2, Chen Yang2, Jiaqi Yang2, Yongxiang Wang2, Yindong Kang1,()   

  1. 1Department of Urology, 940th Hospital of the Chinese People's Liberation Army Joint Logistics Support Force, Lanzhou 730050, China
    2Department of Urology, Gansu Second People's Hospital, Lanzhou 730000, China
  • Received:2024-07-19 Published:2025-08-01
  • Corresponding author: Yindong Kang
引用本文:

薛国强, 赵立明, 刘学军, 任玉林, 晏发隆, 杨晨, 杨嘉祺, 王永翔, 康印东. 甘草酸对尿源性脓毒症相关急性肾损伤的作用机制研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 498-507.

Guoqiang Xue, Liming Zhao, Xuejun Liu, Yulin Ren, Falong Yan, Chen Yang, Jiaqi Yang, Yongxiang Wang, Yindong Kang. Study on the mechanism of glycyrrhizic acid on acute renal injury caused by urogenic sepsis[J/OL]. Chinese Journal of Endourology(Electronic Edition), 2025, 19(04): 498-507.

目的

通过建立尿源性脓毒症动物模型,模拟输尿管急性梗阻感染致急性肾损伤(AKI),探讨甘草酸(GA)对尿源性脓毒症相关急性肾损伤的作用机制。

方法

将20只雄性健康新西兰兔分为四组,每组5只,即对照组、假手术组、脓毒症组、脓毒症+甘草酸组。对照组不做任何处理,仅提供饲料自由饮食。假手术组暴露左侧输尿管中上段,其他不做任何处理。脓毒症组将浓度为108 cfu/mL的大肠杆菌(ATCC 25922)按0.5 mL/kg注射至家兔左侧输尿管,然后用丝线结扎输尿管的远端,复制由输尿管急性梗阻并感染致尿源性脓毒症模型。脓毒症+甘草酸组在脓毒症组的基础上经耳缘静脉注射甘草酸溶液5 mg/kg,连续给3 d。于术后72 h,检测各组外周血白细胞计数、中性粒细胞计数、C反应蛋白、血肌酐和尿素氮;采用ELISA法测定血清中高迁移率族蛋白B1(HMGB1)、肿瘤坏死因子α(TNF-α)、白介素1β(IL-1β)、白介素6(IL-6)的含量;取各组肾组织HE染色,评估炎性浸润及肾小管损伤情况;用RT-PCR、Western-blot及免疫组织化学检测肾脏中HMGB1、Toll样受体4(TLR4)、核因子κB P65(NF-κB P65)等相关信号通路分子表达。

结果

假手术组与对照组相比,血清白细胞计数、中性粒细胞计数和C反应蛋白水平含量差异无统计学意义(P>0.05)。脓毒症组血清白细胞计数、中性粒细胞计数和C反应蛋白水平显著高于假手术组(P<0.05);GA处理72 h后脓毒症组家兔血清中白细胞、中性粒细胞和C反应蛋白的水平显著降低(P<0.05);脓毒症组家兔血清中血肌酐和尿素氮水平显著高于假手术组(P<0.05);GA处理72 h后脓毒症组家兔血清中血肌酐和尿素氮的水平显著降低(P<0.05)。脓毒症组家兔血清中HMGB1、TNF-α、IL-1β、IL-6水平显著高于假手术组(P<0.05);GA处理72 h后脓毒症组家兔血清中HMGB1、TNF-α、IL-1β、IL-6水平显著降低(P<0.05)。脓毒症组家兔肾组织中的TLR4、NF-κB P65蛋白水平显著升高;GA处理后显著抑制TLR4/NF-κB信号通路激活。

结论

甘草酸对尿源性脓毒症相关AKI有一定治疗价值,甘草酸减轻尿源性脓毒症相关AKI可能是通过调控HMGB1/TLR4/NF-κB信号通路实现的。

Objective

To establish an animal model of urogenic sepsis and simulating acute kidney injury (AKI) caused by acute ureteral obstruction and infection. To explore the mechanism of action of glycyrrhizic acid (GA) on acute kidney injury related to urinary sepsis.

Methods

Twenty male healthy New Zealand rabbits were divided into four groups with five rabbits in each group: control group, sham operation group, sepsis group, sepsis + glycyrrhizin group. Control group did not receive any treatment, only with free diet. In the sham operation group, the left upper middle segment of the ureter was exposed, and no other treatment was done. In the sepsis group, E. coli (ATCC 25922) at a concentration of 108 cfu/mLwas injected into the left ureter of rabbits at the rate of 0.5 mL/kg, and then the distal end of the ureter was ligated with silk suture to replicate the model of urogenic sepsis caused by acute ureteral obstruction and infection. In sepsis + glycyrrhizic acid group, on the basis of sepsis group, glycyrrhizic acid solution of 5 mg/kg was injected through ear vein for 3 consecutive days. At 72 h after operation, peripheral blood white blood cell count, neutrophil count, C-reactive protein, serum creatinine and urea nitrogen were detected. The contents of high mobility group box 1 (HMGB1), TNF-α, IL-1β and IL-6 in serum were determined by ELISA. Renal tissue of each group was stained with HE to evaluate inflammatory infiltration and renal tubular injury. The expression of HMGB1, Toll-like receptor 4 (TLR4), nuclear factor-κB P65 (NF-κB P65) and other related signaling pathways were detected by RT-PCR, Western-blot and IHC.

Results

There was no significant difference in the expression of serum leukocyte count, neutrophil count and C-reactive protein between sham operation group and control group (P>0.05). Serum leukocyte count, neutrophil count and C-reactive protein level in sepsis group were significantly higher than those in sham operation group (P<0.05). GA treatment for 72 h significantly decreased the levels of leukocytes, neutrophils and C-reactive protein in serum of rabbits in sepsis group (P<0.05). The serum creatinine and urea nitrogen levels of rabbits in sepsis group were significantly higher than those in sham operation group (P<0.05). GA treatment for 72 h reduced the serum creatinine and urea nitrogen levels of rabbits in sepsis group (P<0.05). Serum levels of HMGB1, TNF-α, IL-1β and IL-6 in sepsis group were significantly higher than those in sham operation group (P<0.05). GA treatment for 72 h reduced the serum levels of HMGB1, TNF-α, IL-1β and IL-6 of rabbits in sepsis group (P<0.05). The levels of TLR4 and NF-κB p65 in renal tissue of rabbits with sepsis were significantly increased. GA treatment significantly inhibited the activation of TLR4/NF-κB signaling pathway.

Conclusion

Glycyrrhizic acid has certain therapeutic value for AKI related to urogenic sepsis, Glycyrrhizic acid may reduce AKI associated with urogenic sepsis by regulating the HMGB1/TLR4/NF-κB signaling pathway.

表1 用于PCR的引物序列
表2 各组家兔血清炎性指标比较(±s
表3 各组家兔血肌酐、尿素氮数值比较(±s
图1 各组家兔血清中HMGB1、TNF-α、IL-1β、IL-6水平注:HMGB1为高迁移率族蛋白B1;*P<0.05
图2 各组家兔肾组织病理光镜观察结果(HE 10×20)注:a示对照组,b示假手术组,两组无明显充血水肿和炎性细胞浸润;c示脓毒症组,见大量血症细胞浸润,肾小管上皮细胞肿胀、坏死;d示脓毒症+甘草酸组,炎症反应变化较脓毒血症组减轻
图3 各组家兔肾组织中HMGB1、TLR4、NF-κB P65 mRNA的水平注:HMGB1为高迁移率族蛋白B1;TLR4为Toll样受体4;NF-κB P65为核因子-κB P65;*P<0.05
图4 免疫组化检测Toll样受体4(TLR4)在各组家兔肾组织中的表达(10×20)注:a示对照组,b示假手术组,两组TLR4蛋白表达量小,差异无统计学意义;c示脓毒症组,TLR4蛋白表达明显增加,d示脓毒症+甘草酸组,TLR4蛋白表达明显减少
图5 免疫组化检测核因子-κB p65(NF-κB p65)在各组家兔肾组织中的表达(10×20)注:a示对照组,b示假手术组,两组NF-κB p65蛋白表达量小,差异无统计学意义;c示脓毒症组,NF-κB p65蛋白表达明显增加,d示脓毒症+甘草酸组,NF-κB p65蛋白表达明显减少
图6 免疫组化检测各组家兔肾组织中TLR4、NF-κB p65蛋白表达水平注:*P<0.05
图7 Western blot检测各组家兔肾组织中TLR4、NF-κB p65蛋白表达情况注:β-actin为内参
图8 Western blot检测各组家兔肾组织中TLR4、NF-κB p65蛋白表达水平注:*P<0.05
表4 各组家兔肾组织中TLR4、NF-κB p65表达水平(±s)
[1]
Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA, 2016, 315(8): 801-810. DOI: 10.1001/jama.2016.0287.
[2]
Peerapornratana S, Manrique-Caballero CL, Gómez H, et al. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment[J]. Kidney Int, 2019, 96(5): 1083-1099. DOI: 10.1016/j.kint.2019.05.026.
[3]
Tang D, Wang H, Billiar TR, et al. Emerging mechanisms of immunocoagulation in sepsis and septic shock[J]. Trends Immunol, 2021, 42(6): 508-522. DOI: 10.1016/j.it.2021.04.001.
[4]
樊洋, 李国力, 郝禹, 等. 内毒素打击后小鼠脾脏T淋巴细胞功能恢复动态研究[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(1): 32-40. DOI: 10.3877/cma.j.issn.1674-1358.2023.01.006.
[5]
Volmari A, Foelsch K, Zierz E, et al. Leukocyte-derived high-mobility group box 1 governs hepatic immune responses to Listeria monocytogenes[J]. Hepatol Commun, 2021, 5(12): 2104-2120. DOI: 10.1002/hep4.1777.
[6]
Rodrigues AT, Rodrigues JT, Rodrigues CT, et al. Association between thrombomodulin and high mobility group box 1 in sepsis patients[J]. World J Crit Care Med, 2020, 9(4): 63-73. DOI: 10.5492/wjccm.v9.i4.63.
[7]
Cai J, Lin Z. Correlation of blood high mobility group box-1 protein with mortality of patients with sepsis: a meta-analysis[J]. Heart Lung, 2021, 50(6): 885-892. DOI: 10.1016/j.hrtlng.2021.07.010.
[8]
Ren C, Yao RQ, Wang LX, et al. Antagonism of cerebral high mobility group box 1 ameliorates dendritic cell dysfunction in sepsis[J]. Front Pharmacol, 2021, 12: 665579. DOI: 10.3389/fphar.2021.665579.
[9]
Fang J, Ge X, Xu W, et al. Bioinformatics analysis of the prognosis and biological significance of HMGB1, HMGB2, and HMGB3 in gastric cancer[J]. J Cell Physiol, 2020, 235(4): 3438-3446. DOI: 10.1002/jcp.29233.
[10]
Ye Z, Jia J, Lv Z, et al. Identification of high-mobility group box 1 (HMGB1) expression as a potential predictor of rejection and poor prognosis after liver transplantation[J]. Ann Transplant, 2021, 26: e931625. DOI: 10.12659/AOT.931625.
[11]
Zhao H, Zhao M, Wang Y, et al. Glycyrrhizic acid attenuates sepsis-induced acute kidney injury by inhibiting NF-κB signaling pathway[J]. Evid Based Complement Alternat Med, 2016, 2016: 8219287. DOI: 10.1155/2016/8219287.
[12]
Zhao F, Fang Y, Deng S, et al. Glycyrrhizin protects rats from sepsis by blocking HMGB1 signaling[J]. Biomed Res Int, 2017, 2017: 9719647. DOI: 10.1155/2017/9719647.
[13]
苗软昕, 乔晞. Toll样受体在脓毒症性急性肾损伤中的作用[J]. 中华肾病研究电子杂志, 2023, 12(4): 210-214. DOI: 10.3877/cma.j.issn.2095-3216.2023.04.006.
[14]
Oh H, Choi A, Seo N, et al. Protective effect of glycyrrhizin, a direct HMGB1 inhibitor, on post-contrast acute kidney injury[J]. Sci Rep, 2021, 11(1): 15625. DOI: 10.1038/s41598-021-94928-5.
[15]
许武军, 陈仙, 罗志刚, 等. 尿源性脓毒血症兔模型的建立及鲎试验的诊断价值[J]. 广西医学, 2018, 40(23): 2820-2823. DOI: 10.11675/j.issn.0253-4304.2018.23.20.
[16]
李增亮, 要旗, 张开元,等. 肠道菌群在脓毒症发生发展中的作用及其治疗潜力[J]. 医学新知, 2024, 34(12): 1417-1423. DOI: 10.12173/j.issn.1004-5511.202408062.
[17]
樊恒, 孙敏, 朱建华. 红景天苷通过抑制PI3K/AKT/mTOR信号通路对大鼠脓毒症急性肾损伤的保护作用[J]. 中华危重症医学杂志(电子版), 2024, 17(3): 188-195. DOI: 10.3877/cma.j.issn.1674-6880.2024.03.003.
[18]
Zhang X, Su C, Zhao S, et al. Combination therapy of Ulinastatin with Thrombomodulin alleviates endotoxin (LPS) - induced liver and kidney injury via inhibiting apoptosis, oxidative stress and HMGB1/TLR4/NF-κB pathway[J]. Bioengineered, 2022, 13(2): 2951-2970. DOI: 10.1080/21655979.2021.2024686.
[19]
Fowler AA 3rd, Truwit JD, Duncan Hite R, et al. Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: the CITRIS-ALI randomized clinical trial[J]. JAMA, 2019, 322(13): 1261-1270. DOI: 10.1001/jama.2019.11825.
[20]
Matics TJ, Nelson Sanchez-Pinto L. Adaptation and validation of a pediatric sequential organ failure assessment score and evaluation of the sepsis-3 definitions in critically ill children[J]. JAMA Pediatr, 2017, 171(10): e172352. DOI: 10.1001/jamapediatrics.2017.2352.
[21]
Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study[J]. Lancet, 2020, 395(10219): 200-211. DOI: 10.1016/S0140-6736(19)32989-7.
[22]
He FF, Wang YM, Chen YY, et al. Sepsis-induced AKI: from pathogenesis to therapeutic approaches[J]. Front Pharmacol, 2022, 13: 981578. DOI: 10.3389/fphar.2022.981578.
[23]
Zang D, Li W, Cheng F, et al. Accuracy and sensitivity of high mobility group box 1 (HMGB1) in diagnosis of acute kidney injury caused by sepsis and relevance to prognosis[J]. Clin Chim Acta, 2022, 535: 61-67. DOI: 10.1016/j.cca.2022.07.015.
[24]
Anderberg SB, Luther T, Frithiof R. Physiological aspects of Toll-like receptor 4 activation in sepsis-induced acute kidney injury[J]. Acta Physiol (Oxf), 2017, 219(3): 573-588. DOI: 10.1111/apha.12798.
[25]
张春敏, 陈飞燕, 杨文敏, 等. 抑制miR-4321减轻脓毒症相关急性肾脏损伤的作用和机制研究[J]. 中山大学学报(医学科学版), 2022, 43(6): 928-937. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2022.0608.
[26]
Zhang J, Xia J, Zhang Y, et al. HMGB1-TLR4 signaling participates in renal ischemia reperfusion injury and could be attenuated by dexamethasone-mediated inhibition of the ERK/NF-κB pathway[J]. Am J Transl Res, 2016, 8(10): 4054-4067.
[27]
Hwang JS, Choi HS, Ham SA, et al. Deacetylation-mediated interaction of SIRT1-HMGB1 improves survival in a mouse model of endotoxemia[J]. Sci Rep, 2015, 5: 15971. DOI: 10.1038/srep15971.
[28]
Yamashiro K, Ideguchi H, Aoyagi H, et al. High mobility group box 1 expression in oral inflammation and regeneration[J]. Front Immunol, 2020, 11: 1461. DOI: 10.3389/fimmu.2020.01461.
[29]
Deng C, Zhao L, Yang Z, et al. Targeting HMGB1 for the treatment of sepsis and sepsis-induced organ injury[J]. Acta Pharmacol Sin, 2022, 43(3): 520-528. DOI: 10.1038/s41401-021-00676-7.
[30]
Zheng S, Pan Y, Wang C, et al. HMGB1 turns renal tubular epithelial cells into inflammatory promoters by interacting with TLR4 during sepsis[J]. J Interferon Cytokine Res, 2016, 36(1): 9-19. DOI: 10.1089/jir.2015.0067.
[31]
Sinha P, Matthay MA, Calfee CS. Is a "cytokine storm" relevant to COVID-19?[J]. JAMA Intern Med, 2020, 180(9): 1152-1154. DOI: 10.1001/jamainternmed.2020.3313.
[32]
Cavone L, Muzzi M, Mencucci R, et al. 18β-glycyrrhetic acid inhibits immune activation triggered by HMGB1, a pro-inflammatory protein found in the tear fluid during conjunctivitis and blepharitis[J]. Ocul Immunol Inflamm, 2011, 19(3): 180-185. DOI: 10.3109/09273948.2010.538121.
[33]
Richard SA, Jiang Y, Xiang LH, et al. Post-translational modifications of high mobility group box 1 and cancer[J]. Am J Transl Res, 2017, 9(12): 5181-5196.
[34]
Gao Z, Lu L, Chen X. Release of HMGB1 in podocytes exacerbates lipopolysaccharide-induced acute kidney injury[J]. Mediators Inflamm, 2021, 2021: 5220226. DOI: 10.1155/2021/5220226.
[35]
Wu Y, Chen W, Zhang Y, et al. Potent therapy and transcriptional profile of combined erythropoietin-derived peptide cyclic helix B surface peptide and caspase-3 siRNA against kidney ischemia/reperfusion injury in mice[J]. J Pharmacol Exp Ther, 2020, 375(1): 92-103. DOI: 10.1124/jpet.120.000092.
[36]
Xu HP, Ma XY, Yang C. Circular RNA TLK1 promotes sepsis-associated acute kidney injury by regulating inflammation and oxidative stress through miR-106a-5p/HMGB1 axis[J]. Front Mol Biosci, 2021, 8: 660269. DOI: 10.3389/fmolb.2021.660269.
[37]
Yang WS, Han NJ, Kim JJ, et al. TNF-α activates high-mobility group box 1 - toll-like receptor 4 signaling pathway in human aortic endothelial cells[J]. Cell Physiol Biochem, 2016, 38(6): 2139-2151. DOI: 10.1159/000445570.
[38]
Chen L, Lu Q, Deng F, et al. miR-103a-3p could attenuate sepsis-induced liver injury by targeting HMGB1[J]. Inflammation, 2020, 43(6): 2075-2086. DOI: 10.1007/s10753-020-01275-0.
[39]
Li ZL, Gao M, Yang MS, et al. Sesamin attenuates intestinal injury in sepsis via the HMGB1/TLR4/IL-33 signalling pathway[J]. Pharm Biol, 2020, 58(1): 898-904. DOI: 10.1080/13880209.2020.1787469.
[40]
Li L, Lu YQ. The regulatory role of high-mobility group protein 1 in sepsis-related immunity[J]. Front Immunol, 2021, 11: 601815. DOI: 10.3389/fimmu.2020.601815.
[41]
Manthiram K, Zhou Q, Aksentijevich I, et al. The monogenic autoinflammatory diseases define new pathways in human innate immunity and inflammation[J]. Nat Immunol, 2017, 18(8): 832-842. DOI: 10.1038/ni.3777.
[42]
Zhang P, Xin X, Fang L, et al. HMGB1 mediates Aspergillus fumigatus-induced inflammatory response in alveolar macrophages of COPD mice via activating MyD88/NF-κB and syk/PI3K signalings[J]. Int Immunopharmacol, 2017, 53: 125-132. DOI: 10.1016/j.intimp.2017.10.007.
[43]
Tao H, Li N, Zhang Z, et al. Erlotinib protects LPS-induced acute lung injury in mice by inhibiting EGFR/TLR4 signaling pathway[J]. Shock, 2019, 51(1): 131-138. DOI: 10.1097/SHK.0000000000001124.
[1] 姜明霞, 李俏, 徐兵河. 局部晚期HER-2阳性乳腺癌的新辅助治疗[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(03): 129-138.
[2] 陈瑞, 王丽, 徐海乐, 许彬, 陈超, 陆件. 早期监测白细胞介素35 联合肝素结合蛋白对脓毒症相关急性肾损伤的预测价值[J/OL]. 中华危重症医学杂志(电子版), 2025, 18(02): 122-127.
[3] 李培真, 刘海亮, 李大伟, 贾昊, 张泽瑾, 刘力维, 申传安. 重度烧伤患者发生早期急性肾损伤危险因素分析及预测模型建立[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(03): 199-205.
[4] 赵海涛. 进展期胆管癌治疗探索及展望[J/OL]. 中华普通外科学文献(电子版), 2025, 19(02): 110-110.
[5] 吴楚营, 叶凯. 不同部位胃肠道间质瘤的腹腔镜手术策略[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(02): 224-227.
[6] 李博, 翟炜, 郑军华. CD70在肾细胞癌精准诊疗中的价值[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 399-403.
[7] 陈琼, 吴卓龙, 黄吉炜. 免疫治疗在局部进展期肾癌围手术期治疗中的应用进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 418-422.
[8] 张辉, 林金铭, 郭高伟, 李鑫基, 张伟, 黄沛东, 郑长征, 陈晓生, 卢勇. 广东省医学会泌尿外科疑难病例多学科会诊(第17期)——右肾巨大肿瘤并腔静脉癌栓和髂血管血栓[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 532-538.
[9] 陈博滔, 胡宽, 毛先海. 胆囊癌肿瘤微环境与系统治疗[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(02): 203-208.
[10] 绳春佳, 陈雨浩, 彭飞, 夏纪凯, 李晓帆, 陈健文, 张楚悦, 吴玲玲, 刘娇娜, 白雪源, 陈香美. 表没食子儿茶素没食子酸酯通过抑制细胞衰老改善小鼠急性肾损伤[J/OL]. 中华肾病研究电子杂志, 2025, 14(03): 133-139.
[11] 覃宛冰, 刘庆华. 利用靶向纳米药物治疗急性肾损伤研究进展[J/OL]. 中华肾病研究电子杂志, 2025, 14(03): 121-125.
[12] 陈雨浩, 张楚悦, 绳春佳, 肖拓, 姜波, 蔡广研. 超声微泡辅助间充质干细胞来源外泌体超声引导的肾内递送对大鼠急性肾损伤的治疗作用[J/OL]. 中华肾病研究电子杂志, 2025, 14(03): 126-132.
[13] 林瑾, 赵宸龙, 岳之琳, 段美丽. 接受CRRT 的SAKI 危重患者早期死亡的危险因素及其预测价值[J/OL]. 中华重症医学电子杂志, 2025, 11(02): 186-192.
[14] 宋陈晨, 梁天赐, 赵悦, 张超贻, 王辉, 问婷芝, 戎彪学. X 型胶原α1 在恶性肿瘤中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(03): 221-228.
[15] 刘玉奇, 李健, 仲捷, 李群, 常帅, 于春鹏. 微波消融同步肝动脉插管化疗栓塞联合靶免治疗大肝癌的临床疗效及安全性分析[J/OL]. 中华介入放射学电子杂志, 2025, 13(02): 110-116.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?