切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2025, Vol. 19 ›› Issue (04) : 399 -403. doi: 10.3877/cma.j.issn.1674-3253.2025.04.001

专家论坛

CD70在肾细胞癌精准诊疗中的价值
李博, 翟炜(), 郑军华   
  1. 200127 上海交通大学医学院附属仁济医院泌尿科
  • 收稿日期:2024-12-10 出版日期:2025-08-01
  • 通信作者: 翟炜
  • 基金资助:
    国家自然科学基金面上项目(82473386)

Value of CD70 in accurate diagnosis and treatment of renal cell carcinoma

Bo Li, Wei Zhai(), Junhua Zheng   

  1. Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
  • Received:2024-12-10 Published:2025-08-01
  • Corresponding author: Wei Zhai
引用本文:

李博, 翟炜, 郑军华. CD70在肾细胞癌精准诊疗中的价值[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 399-403.

Bo Li, Wei Zhai, Junhua Zheng. Value of CD70 in accurate diagnosis and treatment of renal cell carcinoma[J/OL]. Chinese Journal of Endourology(Electronic Edition), 2025, 19(04): 399-403.

肾细胞癌(RCC)是泌尿系统常见肿瘤之一,严重威胁人类健康,明确其诊断并开展治疗仍是一项具有挑战性的问题。CD70作为RCC特别是肾透明细胞癌独特表达的生物学标志物,从肾癌的诊断到治疗的各个方面具有广泛的应用价值。本文将聚焦CD70在肾癌临床诊疗过程中的转化与运用,着眼临床工作中相关的新技术和新疗法,推测未来可能的应用方向。

Renal cell carcinoma (RCC) is one of the most common tumors of the urinary system, which is a serious threat to human health. The diagnosis and treatment of RCC are still urgent problems. As a unique biomarker of renal cell carcinoma, especially clear cell renal cell carcinoma, CD70 has a wide range of applications from diagnosis to treatment. This paper will focus on the clinical translation and application of CD70 in the diagnosis and treatment for renal cell cancer, and pay close attention to new technologies and therapies related to clinical work, as well as speculate the possible application direction in the near future.

[1]
郑荣寿, 陈茹, 韩冰峰, 等. 2022年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2024, 46(3): 221-231. DOI: 10.3760/cma.j.cn112152-20240119-00035
[2]
Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024[J]. CA A Cancer J Clinicians, 2024, 74(1): 12-49. DOI: 10.3322/caac.21820.
[3]
Petrau C, Cornic M, Bertrand P, et al. CD70: a potential target in breast cancer?[J]. J Cancer, 2014, 5(9): 761-764. DOI: 10.7150/jca.10360.
[4]
Jin L, Ge H, Long Y, et al. CD70, a novel target of CAR T-cell therapy for gliomas[J]. Neuro-Oncology, 2018, 20(1): 55-65. DOI: 10.1093/neuonc/nox116.
[5]
Liu N, Sheng X, Liu Y, et al. Increased CD70 expression is associated with clinical resistance to cisplatin-based chemotherapy and poor survival in advanced ovarian carcinomas[J]. Onco Targets Ther, 2013, 6: 615-619. DOI: 10.2147/OTT.S44445.
[6]
Huang RR, Chen Z, Kroeger N, et al. CD70 is consistently expressed in primary and metastatic clear cell renal cell carcinoma[J]. Clin Genitourin Cancer, 2024, 22(2): 347-353. DOI: 10.1016/j.clgc.2023.12.003.
[7]
Boursalian TE, McEarchern JA, Law CL, et al. Targeting CD70 for human therapeutic use[J]. Adv Exp Med Biol, 2009, 647: 108-119. DOI: 10.1007/978-0-387-89520-8_7.
[8]
Flieswasser T, Van den Eynde A, Van Audenaerde J, et al. The CD70-CD27 axis in oncology: the new kids on the block[J]. J Exp Clin Cancer Res, 2022, 41(1): 12. DOI: 10.1186/s13046-021-02215-y.
[9]
Benhamouda N, Sam I, Epaillard N, et al. Plasma CD27, a surrogate of the intratumoral CD27-CD70 interaction, correlates with immunotherapy resistance in renal cell carcinoma[J]. Clin Cancer Res, 2022, 28(22): 4983-4994. DOI: 10.1158/1078-0432.CCR-22-0905.
[10]
Ruf M, Mittmann C, Nowicka AM, et al. pVHL/HIF-regulated CD70 expression is associated with infiltration of CD27+ lymphocytes and increased serum levels of soluble CD27 in clear cell renal cell carcinoma[J]. Clin Cancer Res, 2015, 21(4): 889-898. DOI: 10.1158/1078-0432.CCR-14-1425.
[11]
Aboagye EO, Barwick TD, Haberkorn U. Radiotheranostics in oncology: making precision medicine possible[J]. CA Cancer J Clin, 2023, 73(3): 255-274. DOI: 10.3322/caac.21768.
[12]
Wei W, Younis MH, Lan X, et al. Single-domain antibody theranostics on the horizon[J]. J Nucl Med, 2022, 63(10): 1475-1479. DOI: 10.2967/jnumed.122.263907.
[13]
Krasniqi A, D'Huyvetter M, Devoogdt N, et al. Same-day imaging using small proteins: clinical experience and translational prospects in oncology[J]. J Nucl Med, 2018, 59(6): 885-891. DOI: 10.2967/jnumed.117.199901.
[14]
Cleeren F, Lecina J, Bridoux J, et al. Direct fluorine-18 labeling of heat-sensitive biomolecules for positron emission tomography imaging using the Al18F-RESCA method[J]. Nat Protoc, 2018, 13(10): 2330-2347. DOI: 10.1038/s41596-018-0040-7.
[15]
Qin X, Guo X, Liu T, et al. High in-vivo stability in preclinical and first-in-human experiments with [18F] AlF-RESCA-MIRC213: a 18F-labeled nanobody as PET radiotracer for diagnosis of HER2-positive cancers[J]. Eur J Nucl Med Mol Imaging, 2023, 50(2): 302-313. DOI: 10.1007/s00259-022-05967-7.
[16]
Wang C, Chen Y, Hou YN, et al. ImmunoPET imaging of multiple myeloma with [68Ga] Ga-NOTA-Nb1053[J]. Eur J Nucl Med Mol Imag, 2021, 48(9): 2749-2760. DOI: 10.1007/s00259-021-05218-1.
[17]
Wu Q, Wu Y, Zhang Y, et al. ImmunoPET/CT imaging of clear cell renal cell carcinoma with [18F] RCCB6: a first-in-human study[J]. Eur J Nucl Med Mol Imag, 2024, 51(8): 2444-2457. DOI: 10.1007/s00259-024-06672-3.
[18]
Gelardi F, Larcher A, Antunovic L, et al. Biological characterization of renal masses using immuno-PET[J]. Eur J Nucl Med Mol Imaging, 2024, 51(8): 2442-2443. DOI: 10.1007/s00259-024-06757-z.
[19]
Wu Q, Wu Y, Zhang Y, et al. [18F] RCCB6 immuno-positron emission tomography/computed tomography for postoperative surveillance in clear cell renal cell carcinoma: a pilot clinical study[J]. Eur Urol, 2024, 86(4): 372-374. DOI: 10.1016/j.eururo.2024.06.020.
[20]
Riether C, Pabst T, Höpner S, et al. Targeting CD70 with cusatuzumab eliminates acute myeloid leukemia stem cells in patients treated with hypomethylating agents[J]. Nat Med, 2020, 26(9): 1459-1467. DOI: 10.1038/s41591-020-0910-8.
[21]
Tannir NM, Forero-Torres A, Ramchandren R, et al. Phase I dose-escalation study of SGN-75 in patients with CD70-positive relapsed/refractory non-Hodgkin lymphoma or metastatic renal cell carcinoma[J]. Invest New Drugs, 2014, 32(6): 1246-1257. DOI: 10.1007/s10637-014-0151-0.
[22]
Pal SK, Forero-Torres A, Thompson JA, et al. A phase 1 trial of SGN-CD70A in patients with CD70-positive, metastatic renal cell carcinoma[J]. Cancer, 2019, 125(7): 1124-1132. DOI: 10.1002/cncr.31912.
[23]
Li S, Chen D, Guo H, et al. The novel high-affinity humanized antibody IMM40H targets CD70, eliminates tumors via Fc-mediated effector functions, and interrupts CD70/CD27 signaling[J]. Front Oncol, 2023, 13: 1240061. DOI: 10.3389/fonc.2023.1240061.
[24]
Yang M, Tang X, Zhang Z, et al. Tandem CAR-T cells targeting CD70 and B7-H3 exhibit potent preclinical activity against multiple solid tumors[J]. Theranostics, 2020, 10(17): 7622-7634. DOI: 10.7150/thno.43991.
[25]
Xiong Q, Wang H, Shen Q, et al. The development of chimeric antigen receptor T-cells against CD70 for renal cell carcinoma treatment[J]. J Transl Med, 2024, 22(1): 368. DOI: 10.1186/s12967-024-05101-1.
[26]
Ji F, Zhang F, Zhang M, et al. Targeting the DNA damage response enhances CD70 CAR-T cell therapy for renal carcinoma by activating the cGAS-STING pathway[J]. J Hematol Oncol, 2021, 14(1): 152. DOI: 10.1186/s13045-021-01168-1.
[27]
Panowski SH, Srinivasan S, Tan N, et al. Preclinical development and evaluation of allogeneic CAR T cells targeting CD70 for the treatment of renal cell carcinoma[J]. Cancer Res, 2022, 82(14): 2610-2624. DOI: 10.1158/0008-5472.CAN-21-2931.
[28]
Pal SK, Tran B, Haanen JBAG, et al. CD70-targeted allogeneic CAR T-cell therapy for advanced clear cell renal cell carcinoma[J]. Cancer Discov, 2024, 14(7): 1176-1189. DOI: 10.1158/2159-8290.CD-24-0102.
[29]
Nagato T, Komatsuda H, Hayashi R, et al. Soluble CD27 as a predictive biomarker for intra-tumoral CD70/CD27 interaction in nasopharyngeal carcinoma[J]. Cancer Sci, 2024, 115(4): 1073-1084. DOI: 10.1111/cas.16079.
[30]
Świderska J, Kozłowski M, Gaur M, et al. Clinical significance of BTLA, CD27, CD70, CD28 and CD80 as diagnostic and prognostic markers in ovarian cancer[J]. Diagnostics (Basel), 2022, 12(2): 251. DOI: 10.3390/diagnostics12020251.
[31]
Massard C, Soria JC, Krauss J, et al. First-in-human study to assess safety, tolerability, pharmacokinetics, and pharmacodynamics of the anti-CD27L antibody-drug conjugate AMG 172 in patients with relapsed/refractory renal cell carcinoma[J]. Cancer Chemother Pharmacol, 2019, 83(6): 1057-1063. DOI: 10.1007/s00280-019-03796-4.
[32]
Aftimos P, Rolfo C, Rottey S, et al. Phase I dose-escalation study of the anti-CD70 antibody ARGX-110 in advanced malignancies[J]. Clin Cancer Res, 2017, 23(21): 6411-6420. DOI: 10.1158/1078-0432.CCR-17-0613.
[1] 姜明霞, 李俏, 徐兵河. 局部晚期HER-2阳性乳腺癌的新辅助治疗[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(03): 129-138.
[2] 陈隆, 段晓鑫, 王思卓, 董胜利. 胃癌免疫治疗的现状[J/OL]. 中华普通外科学文献(电子版), 2025, 19(03): 177-182.
[3] 陈琼, 吴卓龙, 黄吉炜. 免疫治疗在局部进展期肾癌围手术期治疗中的应用进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 418-422.
[4] 叶孙益, 彭鼎, 汪朔, 夏丹. 单孔机器人与腹腔镜在保留肾单位肾部分切除术的小样本随机对照研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 423-428.
[5] 刘国路, 李乾, 王以金, 王苏贵, 胡好, 张璐. 甘油三酯-葡萄糖指数与肾细胞癌患者术后预后的关系[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 492-497.
[6] 薛国强, 赵立明, 刘学军, 任玉林, 晏发隆, 杨晨, 杨嘉祺, 王永翔, 康印东. 甘草酸对尿源性脓毒症相关急性肾损伤的作用机制研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 498-507.
[7] 谭廷武, 张平新, 夏成兴, 杨德林. 单细胞测序技术在前列腺癌免疫治疗中的应用现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 508-513.
[8] 罗瑞翔, 周祥福. 肾门肿瘤的肾部分切除术的手术选择和技术改良[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 521-527.
[9] 张辉, 林金铭, 郭高伟, 李鑫基, 张伟, 黄沛东, 郑长征, 陈晓生, 卢勇. 广东省医学会泌尿外科疑难病例多学科会诊(第17期)——右肾巨大肿瘤并腔静脉癌栓和髂血管血栓[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 532-538.
[10] 丁强, 董翔, 甘卫东. TFE3 重排型肾细胞癌与肾透明细胞癌基于动态增强CT 和临床特征的鉴别[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(03): 329-334.
[11] 王奇, 李林峰, 林启盛, 龚朝阳, 连文清, 龙永富, 黄亚强. 广东省医学会泌尿外科疑难病例多学科会诊(第23期)——VHL综合征并双侧肾细胞癌[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 272-277.
[12] 王少军, 黄丛秀, 刘彩霞, 苏乌云. 阿得贝利单抗治疗肺大细胞神经内分泌癌伴乳腺转移1例[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 494-496.
[13] 沈汶娟, 潘怡, 董林, 邹霜梅. 中国微卫星不稳定大肠癌患者临床病理特征分析[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(03): 251-258.
[14] 覃宛冰, 刘庆华. 利用靶向纳米药物治疗急性肾损伤研究进展[J/OL]. 中华肾病研究电子杂志, 2025, 14(03): 121-125.
[15] 宋陈晨, 梁天赐, 赵悦, 张超贻, 王辉, 问婷芝, 戎彪学. X 型胶原α1 在恶性肿瘤中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(03): 221-228.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?