切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2025, Vol. 19 ›› Issue (05) : 653 -657. doi: 10.3877/cma.j.issn.1674-3253.2025.05.017

综述

细胞死亡在肾缺血再灌注损伤中的研究进展
王杰艳, 胡博文, 梁辉()   
  1. 518000 广东,深圳市龙华区人民医院泌尿外科
  • 收稿日期:2025-03-10 出版日期:2025-10-01
  • 通信作者: 梁辉
  • 基金资助:
    深圳市科技计划项目(JCYJ20220530165014033); 深圳市龙华区科技创新专项基金(11501A20240704D87ABF8); 深圳市龙华区医学会医学科研专项课题(2023LHMA10)

Research progress of cell death in renal ischemia-reperfusion injury

Jieyan Wang, Bowen Hu, Hui Liang()   

  1. Department of Urology, Longhua District People's Hospital, Shenzhen 518000, China
  • Received:2025-03-10 Published:2025-10-01
  • Corresponding author: Hui Liang
引用本文:

王杰艳, 胡博文, 梁辉. 细胞死亡在肾缺血再灌注损伤中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 653-657.

Jieyan Wang, Bowen Hu, Hui Liang. Research progress of cell death in renal ischemia-reperfusion injury[J/OL]. Chinese Journal of Endourology(Electronic Edition), 2025, 19(05): 653-657.

肾缺血再灌注是导致急性肾损伤的主要原因之一,但发生机制尚未明确。近年来,随着研究的不断深入,发现细胞死亡是肾缺血再灌注损伤过程中肾损伤的重要原因,包括细胞凋亡,细胞焦亡,细胞自噬,铁死亡等。本文综述了各种细胞死亡在肾损伤中的作用机制,为肾缺血再灌注损伤的预防和治疗提供新的方向。

Renal ischemia-reperfusion is one of the main causes of acute kidney injury, however, the underlying mechanisms are not yet clear. With the continuous deepening of research, it has been found that cell death attracted increasing attention in renal ischemia-reperfusion injury, including cell apoptosis, cell pyroptosis, cell autophagy, ferroptosis, etc. This article reviews the mechanisms of various cell deaths in renal injury, providing new directions for the prevention and treatment of renal ischemia-reperfusion injury.

[1]
Zhang M, Liu Q, Meng H, et al. Ischemia-reperfusion injury: molecular mechanisms and therapeutic targets[J]. Signal Transduct Target Ther, 2024, 9(1): 12. DOI: 10.1038/s41392-023-01688-x.
[2]
Thapa K, Singh TG, Kaur A. Targeting ferroptosis in ischemia/reperfusion renal injury[J]. Naunyn Schmiedebergs Arch Pharmacol, 2022, 395(11): 1331-1341. DOI: 10.1007/s00210-022-02277-5.
[3]
Liu C, Chen K, Wang H, et al. Gastrin attenuates renal ischemia/reperfusion injury by a PI3K/Akt/bad-mediated anti-apoptosis signaling[J]. Front Pharmacol, 2020, 11: 540479. DOI: 10.3389/fphar.2020.540479.
[4]
Xia W, Li Y, Wu M, et al. Gasdermin E deficiency attenuates acute kidney injury by inhibiting pyroptosis and inflammation[J]. Cell Death Dis, 2021, 12(2): 139. DOI: 10.1038/s41419-021-03431-2.
[5]
Ding C, Ding X, Zheng J, et al. miR-182-5p and miR-378a-3p regulate ferroptosis in I/R-induced renal injury[J]. Cell Death Dis, 2020, 11(10): 929. DOI: 10.1038/s41419-020-03135-z.
[6]
Ansari J, Gavins FNE. Ischemia-reperfusion injury in sickle cell disease: from basics to therapeutics[J]. Am J Pathol, 2019, 189(4): 706-718. DOI: 10.1016/j.ajpath.2018.12.012.
[7]
Chen W, Wang L, Liang P, et al. Reducing ischemic kidney injury through application of a synchronization modulation electric field to maintain Na+/K+-ATPase functions[J]. Sci Transl Med, 2022, 14(635): eabj4906. DOI: 10.1126/scitranslmed.abj4906.
[8]
Kalogeris T, Baines CP, Krenz M, et al. Ischemia/Reperfusion [J]. Compr Physiol. 2016 Dec 6;7(1):113-170. DOI: 10.1002/cphy.c160006.
[9]
Chen X, Jiang J, He B, et al. Piezo1 aggravates ischemia/reperfusion-induced acute kidney injury by Ca2+-dependent calpain/HIF-1α/Notch signaling[J]. Ren Fail, 2025, 47(1): 2447801. DOI: 10.1080/0886022X.2024.2447801.
[10]
Wang JH, Mao HB, Hu JB, et al. Engineering of phosphatidylserine-targeting ROS-responsive polymeric prodrug for the repair of ischemia-reperfusion-induced acute kidney injury[J]. J Control Release, 2024, 376: 1100-1114. DOI: 10.1016/j.jconrel.2024.10.063.
[11]
Pefanis A, Ierino FL, Murphy JM, et al. Regulated necrosis in kidney ischemia-reperfusion injury[J]. Kidney Int, 2019, 96(2): 291-301. DOI: 10.1016/j.kint.2019.02.009.
[12]
Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death[J]. Physiol Rev, 2007, 87(1): 99-163. DOI: 10.1152/physrev.00013.2006.
[13]
Daemen MA, van 't Veer C, Denecker G, et al. Inhibition of apoptosis induced by ischemia-reperfusion prevents inflammation[J]. J Clin Invest, 1999, 104(5): 541-549. DOI: 10.1172/JCI6974.
[14]
Ke Y, Yan H, Chen L, et al. Apoptosis repressor with caspase recruitment domain deficiency accelerates ischemia/reperfusion (I/R)-induced acute kidney injury by suppressing inflammation and apoptosis: The role of AKT/mTOR signaling[J]. Biomed Pharmacother, 2019, 112: 108681. DOI: 10.1016/j.biopha.2019.108681.
[15]
Szeto HH, Liu S, Soong Y, et al. Mitochondria protection after acute ischemia prevents prolonged upregulation of IL-1 β and IL-18 and arrests CKD[J]. J Am Soc Nephrol, 2017, 28(5): 1437-1449. DOI: 10.1681/ASN.2016070761.
[16]
Hu S, Zhang Y, Zhang M, et al. Aloperine protects mice against ischemia-reperfusion (IR)-induced renal injury by regulating PI3K/AKT/mTOR signaling and AP-1 activity[J]. Mol Med, 2016, 21(1): 912-923. DOI: 10.2119/molmed.2015.00056.
[17]
Wang J, Ma R, Wang Y, et al. rhMYDGF alleviates I/R-induced kidney injury by inhibiting inflammation and apoptosis via the Akt pathway[J]. Transplantation, 2023, 107(8): 1729-1739. DOI: 10.1097/TP.0000000000004497.
[18]
Xiao JJ, Liu Q, Li Y, et al. Regulator of calcineurin 1 deletion attenuates mitochondrial dysfunction and apoptosis in acute kidney injury through JNK/Mff signaling pathway[J]. Cell Death Dis, 2022, 13(9): 774. DOI: 10.1038/s41419-022-05220-x.
[19]
Qiao X, Chen X, Wu D, et al. Mitochondrial pathway is responsible for aging-related increase of tubular cell apoptosis in renal ischemia/reperfusion injury[J]. J Gerontol A Biol Sci Med Sci, 2005, 60(7): 830-839. DOI: 10.1093/gerona/60.7.830.
[20]
Fu ZJ, Wang ZY, Xu L, et al. HIF-1α-BNIP3-mediated mitophagy in tubular cells protects against renal ischemia/reperfusion injury[J]. Redox Biol, 2020, 36: 101671. DOI: 10.1016/j.redox.2020.101671.
[21]
Isaka Y, Suzuki C, Abe T, et al. Bcl-2 protects tubular epithelial cells from ischemia/reperfusion injury by dual mechanisms[J]. Transplant Proc, 2009, 41(1): 52-54. DOI: 10.1016/j.transproceed.2008.10.026.
[22]
Abogresha NM, Greish SM, Abdelaziz EZ, et al. Remote effect of kidney ischemia-reperfusion injury on pancreas: role of oxidative stress and mitochondrial apoptosis[J]. Arch Med Sci, 2016, 12(2): 252-262. DOI: 10.5114/aoms.2015.48130.
[23]
Ozgen ZE, Erdinc M, Kaya MS, et al. Involvement of necroptosıs and apoptosıs ın protectıve effects of cyclosporın a on ischemıa-reperfusıon injury in rat kıdney[J]. J Mol Histol, 2024, 56(1): 30. DOI: 10.1007/s10735-024-10281-7.
[24]
Li Y, Hou D, Chen X, et al. Hydralazine protects against renal ischemia-reperfusion injury in rats[J]. Eur J Pharmacol, 2019, 843: 199-209. DOI: 10.1016/j.ejphar.2018.11.015.
[25]
Zychlinsky A, Prevost MC, Sansonetti PJ. Shigella flexneri induces apoptosis in infected macrophages[J]. Nature, 1992, 358(6382): 167-169. DOI: 10.1038/358167a0.
[26]
Yang JR, Yao FH, Zhang JG, et al. Ischemia-reperfusion induces renal tubule pyroptosis via the CHOP-caspase-11 pathway[J]. Am J Physiol Renal Physiol, 2014, 306(1): F75-F84. DOI: 10.1152/ajprenal.00117.2013.
[27]
Pang Y, Zhang PC, Lu RR, et al. Andrade-Oliveira salvianolic acid B modulates caspase-1-mediated pyroptosis in renal ischemia-reperfusion injury via Nrf2 pathway[J]. Front Pharmacol, 2020, 11: 541426. DOI: 10.3389/fphar.2020.541426.
[28]
Xiao C, Zhao H, Zhu H, et al. Tisp40 induces tubular epithelial cell GSDMD-mediated pyroptosis in renal ischemia-reperfusion injury via NF-κB signaling[J]. Front Physiol, 2020, 11: 906. DOI: 10.3389/fphys.2020.00906.
[29]
Wu W, Liu D, Zhao Y, et al. Cholecalciferol pretreatment ameliorates ischemia/reperfusion-induced acute kidney injury through inhibiting ROS production, NF-κB pathway and pyroptosis[J]. Acta Histochem, 2022, 124(4): 151875. DOI: 10.1016/j.acthis.2022.151875.
[30]
Tonnus W, Maremonti F, Belavgeni A, et al. Gasdermin D-deficient mice are hypersensitive to acute kidney injury[J]. Cell Death Dis, 2022, 13(9): 792. DOI: 10.1038/s41419-022-05230-9.
[31]
Li S, Zhuang K, He Y, et al. Leptin relieves ischemia/reperfusion induced acute kidney injury through inhibiting apoptosis and autophagy[J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2022, 47(1): 8-17. DOI: 10.11817/j.issn.1672-7347.2022.210244.
[32]
Liu Z, Chen Y, Du Z, et al. Ischemic postconditioning protects against acute kidney injury after limb ischemia reperfusion by regulating HMGB1 release and autophagy[J]. Ren Fail, 2023, 45(1): 2189482. DOI: 10.1080/0886022X.2023.2189482.
[33]
Zhou BY, Yang J, Luo RR, et al. Dexmedetomidine alleviates ischemia/reperfusion-associated acute kidney injury by enhancing autophagic activity via the α2-AR/AMPK/mTOR pathway[J]. Front Biosci (Landmark Ed), 2023, 28(12): 323. DOI: 10.31083/j.fbl2812323.
[34]
Chen Y, Liu Y, Tu W, et al. m6A demethylase FTO transcriptionally activated by SP1 improves ischemia reperfusion-triggered acute kidney injury by activating Ambra1/ULK1-mediated autophagy[J]. FASEB J, 2024, 38(20): e70118. DOI: 10.1096/fj.202400132RRR.
[35]
Liu M, Chen J, Sun M, et al. Protection of Ndrg2 deficiency on renal ischemia-reperfusion injury via activating PINK1/Parkin-mediated mitophagy[J]. Chin Med J (Engl), 2024, 137(21): 2603-2614. DOI: 10.1097/CM9.0000000000002957.
[36]
Hosohata K, Harnsirikarn T, Chokesuwattanaskul S. Ferroptosis: a potential therapeutic target in acute kidney injury[J]. Int J Mol Sci, 2022, 23(12): 6583. DOI: 10.3390/ijms23126583.
[37]
Wang Y, Quan F, Cao Q, et al. Quercetin alleviates acute kidney injury by inhibiting ferroptosis[J]. J Adv Res, 2020, 28: 231-243. DOI: 10.1016/j.jare.2020.07.007.
[38]
Zhao Z, Wu J, Xu H, et al. XJB-5-131 inhibited ferroptosis in tubular epithelial cells after ischemia-reperfusion injury[J]. Cell Death Dis, 2020, 11(8): 629. DOI: 10.1038/s41419-020-02871-6.
[39]
Packer M. Do sodium-glucose co-transporter-2 inhibitors prevent heart failure with a preserved ejection fraction by counterbalancing the effects of leptin?A novel hypothesis[J]. Diabetes Obes Metab, 2018, 20(6): 1361-1366. DOI: 10.1111/dom.13229.
[40]
冀颖, 于磊. SGLT2抑制剂对肾脏作用机制的研究进展[J]. 临床肾脏病杂志, 2020, 20(4): 326-331. DOI: 10.3969/j.issn.1671-2390.2020.04.012.
[41]
Hirashima Y, Nakano T, Torisu K, et al. SGLT2 inhibition mitigates transition from acute kidney injury to chronic kidney disease by suppressing ferroptosis[J]. Sci Rep, 2024, 14(1): 20386. DOI: 10.1038/s41598-024-71416-0.
[42]
Güler MC, Akpinar E, Tanyeli A, et al. Costunolide prevents renal ischemia-reperfusion injury in rats by reducing autophagy, apoptosis, inflammation, and DNA damage[J]. Iran J Basic Med Sci, 2023, 26(10): 1168-1176. DOI: 10.22038/IJBMS.2023.71779.15596.
[43]
Zheng X, Chen D, Wu J, et al. Apelin-13 inhibits ischemia-reperfusion mediated podocyte apoptosis by reducing m-TOR phosphorylation to enhance autophagy[J]. FASEB J, 2025, 39(2): e70319. DOI: 10.1096/fj.202402850R.
[44]
Liu L, Wei Q, Wang R, et al. Rab7-regulated ferroptosis contributes to tubular epithelial cells injury by degradation of GPX4 via chaperone-mediated autophagy in AKI[J]. Am J Physiol Cell Physiol, 2025, 328(2): C699-C709. DOI: 10.1152/ajpcell.00636.2023.
[45]
Ni L, Yuan C, Wu X. Targeting ferroptosis in acute kidney injury[J]. Cell Death Dis, 2022, 13(2): 182. DOI: 10.1038/s41419-022-04628-9.
[46]
Granata S, Votrico V, Spadaccino F, et al. Oxidative stress and ischemia/reperfusion injury in kidney transplantation: focus on ferroptosis, mitophagy and new antioxidants[J]. Antioxidants (Basel), 2022, 11(4): 769. DOI: 10.3390/antiox11040769.
[47]
Kuo IY, Brill AL, Lemos FO, et al. Polycystin 2 regulates mitochondrial Ca2+ signaling, bioenergetics, and dynamics through mitofusin 2[J]. Sci Signal, 2019, 12(580): eaat7397. DOI: 10.1126/scisignal.aat7397.
[48]
Ning B, Guo C, Kong A, et al. Calcium signaling mediates cell death and crosstalk with autophagy in kidney disease[J]. Cells, 2021, 10(11): 3204. DOI: 10.3390/cells10113204.
[49]
张一绚, 韩冰, 刘超, 等. 年轻化内环境改善老年小鼠肾缺血再灌注损伤诱导的肾间质纤维化[J]. 中华肾病研究电子杂志, 2024, 13(3): 129-133. DOI: 10.3877/cma.j.issn.2095-3216.2024.03.002.
[50]
Wu X, Wu X, Wang Z, et al. Delivery of exogenous miR-19b by Wharton’s Jelly Mesenchymal Stem Cells attenuates transplanted kidney ischemia/reperfusion injury by regulating cellular metabolism[J]. Drug Deliv Transl Res, 2025, 15(3): 925-938. DOI: 10.1007/s13346-024-01645-3.
[1] 杨秀珍, 李丽, 徐哲明, 王晶晶, 叶菁菁. 基于排泄性尿路超声造影诊断肾内反流及与DMSA 显像的相关性分析[J/OL]. 中华医学超声杂志(电子版), 2025, 22(04): 348-353.
[2] 陶然, 尹聪, 叶少波, 杨新平, 田洁, 熊丽红, 吴瑾滨, 梅红兵. 应用多学科管理预防日间经皮肾镜碎石取石术后尿源性脓毒症的发生[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 615-621.
[3] 荆强, 刘凡, 韩鹏飞, 张旭辉. 肾盂肾上盏漏斗夹角对输尿管镜钬激光碎石治疗成熟壶腹型肾盂输尿管上段结石的影响[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 465-469.
[4] 杨伟明, 赵伟, 肖云新, 戴建航, 崔凯旋, 陈光耀. 超声引导下经皮肾镜碎石取石术术中非穹窿穿刺的安全性和有效性研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 470-475.
[5] 赵才林, 向青, 钱航, 施雯, 邱凌霄, 王斌. 基于生物信息学解析急性肺损伤/急性呼吸窘迫综合征铁死亡枢纽基因及其与免疫分型的关系[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 503-509.
[6] 李媛媛, 李荣山. 机器学习:肾脏疾病研究与诊疗的新前沿[J/OL]. 中华肾病研究电子杂志, 2025, 14(04): 181-187.
[7] 纪鹏程, 国文凯, 毕靖茹, 韩冰, 傅博, 谢院生. 肾小管上皮细胞微环境对后肾间充质细胞增殖、迁移与分化的影响[J/OL]. 中华肾病研究电子杂志, 2025, 14(04): 188-195.
[8] 陈亚磊, 卢年芳, 刘安琪, 刘虎南, 赵培宏, 陈健文. 终末期肾病合并脓毒症患者临床特征及预后影响因素分析[J/OL]. 中华肾病研究电子杂志, 2025, 14(04): 196-203.
[9] 王辉, 崔恬玉, 段凡. 哺乳动物雷帕霉素靶蛋白信号通路在IgA肾病发病机制中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2025, 14(04): 209-213.
[10] 魏凯悦, 宋一波, 阎磊, 曹慧霞, 赵晓茹, 邵凤民. 补体H因子及其相关蛋白在IgA肾病中的作用[J/OL]. 中华肾病研究电子杂志, 2025, 14(04): 214-217.
[11] 王柯云, 孙雅佳, 李甜, 张钰哲, 郑颖, 张伟光, 王倩, 董哲毅. 糖尿病肾脏疾病早期发生风险预测模型的研究进展[J/OL]. 中华肾病研究电子杂志, 2025, 14(04): 218-225.
[12] 崔少远, 傅博, 刘佳琦, 张双纳, 沈婉君, 宋泽龙, 朱晗玉. 小鼠肾脏透明荧光标本制备及光片荧光显微镜成像技能的教学分析[J/OL]. 中华肾病研究电子杂志, 2025, 14(04): 226-230.
[13] 梁爽, 崔敬, 王涌, 朱晗玉, 蔡广研. 思维导图结合案例教学在肾脏病学临床教学中的效果[J/OL]. 中华肾病研究电子杂志, 2025, 14(04): 231-235.
[14] 王美, 赵勇, 张健, 张俐娜, 丁健华, 曹煜. 基于CT测量肾周脂肪面积对Lap-ISR吻合口并发症的预测价值[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 367-373.
[15] 慕佳霖, 孙萌, 李育霖, 邹卉. 甲基丙二酸血症合并肾脏并发症的发生机制和治疗研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 382-387.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?