切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2025, Vol. 19 ›› Issue (06) : 705 -713. doi: 10.3877/cma.j.issn.1674-3253.2025.06.004

专家论坛

循环肿瘤细胞在膀胱癌诊断和预后中的应用进展
李瑞芳1,2,3,4, 王明帅3, 邢念增1,2,3,4,()   
  1. 1030001 太原,山西医科大学生化教研室
    2030013 太原,山西省肿瘤医院/中国医学科学院肿瘤医院山西医院/山西医科大学附属肿瘤医院泌尿外科
    3100021 北京,国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院北京协和医学院肿瘤医院泌尿外科
    4100021 北京,中国医学科学院肿瘤医院分子肿瘤学国家重点实验室
  • 收稿日期:2025-02-28 出版日期:2025-12-01
  • 通信作者: 邢念增
  • 基金资助:
    国家重点研发计划(2023YFC2507000)

Advances in the application of circulating tumor cells in the diagnosis and prognosis of bladder cancer

Ruifang Li1,2,3,4, Mingshuai Wang3, Nianzeng Xing1,2,3,4,()   

  1. 1Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
    2Department of Urology, Shanxi Cancer Hospital/Chinese Academy of Medical Sciences Cancer Hospital Shanxi Hospital/Shanxi Medical University Affiliated Cancer Hospital, Taiyuan 030013, China
    3National Cancer Center/National Cancer Clinical Medical Research Center/ Department of Urology, Cancer Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100021, China
    4State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing 100021, China
  • Received:2025-02-28 Published:2025-12-01
  • Corresponding author: Nianzeng Xing
引用本文:

李瑞芳, 王明帅, 邢念增. 循环肿瘤细胞在膀胱癌诊断和预后中的应用进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 705-713.

Ruifang Li, Mingshuai Wang, Nianzeng Xing. Advances in the application of circulating tumor cells in the diagnosis and prognosis of bladder cancer[J/OL]. Chinese Journal of Endourology(Electronic Edition), 2025, 19(06): 705-713.

膀胱癌是我国最常见的泌尿系肿瘤之一,通常以膀胱镜检查和组织活检作为诊断和随访的金标准。但膀胱镜检查具有侵入性且费用昂贵,导致患者依从性差,难以广泛用于常规筛查。循环肿瘤细胞(CTC)作为液体活检的一部分,因其操作无创、简便且成本相对较低的特点,在肿瘤早期诊断、预后评估以及个体化治疗等方面均有着较为广泛的运用。与其他液体活检方法相比,CTC保留了完整的细胞信息,对膀胱尿路上皮癌患者的预后和疗效预测具有潜在的临床价值。本文系统综述了CTC富集和检测技术,探讨其在膀胱癌诊断和治疗中的临床应用,并根据目前的研究进展提出了CTC技术未来发展的前景和挑战。

Bladder cancer (BC) is one of the most common genitourinary tumors in China, traditionally diagnosed and monitored through cystoscopy and tissue biopsy, which are considered as the gold standard. However, the invasive nature and high cost of cystoscopy often lead to poor patient compliance, limiting its utility in routine screening. Circulating tumor cells (CTCs), a promising liquid biopsy approach, offer the advantages of being non-invasive, convenient, and cost-effective, with broad applications in early cancer diagnosis, prognostic evaluation, and personalized treatment. Compared to other liquid biopsy methods, CTCs preserve intact cellular information, which holds potential clinical value for predicting prognosis and therapeutic efficacy in patients with bladder urothelial carcinoma. This review systematically summarizes the enrichment and detection techniques of CTCs, explores their clinical applications in the diagnosis and treatment of bladder cancer, and discusses the future prospects and challenges of CTC technology in light of recent research advances.

表1 循环肿瘤细胞(CTC)发展简史
图1 使用TUMORFISHER技术捕获循环肿瘤细胞(CTC)并进行荧光染色注:图a~c为三种不同CKmix荧光强度(低、中、高)的阳性CTC;图d为白细胞对照组;定义具有细胞核(由阳性DAPI确定)包含在细胞质内(由阳性细胞角蛋白7,18,20-异硫氰酸荧光素染色确定)表达、缺乏CD45表达(由阴性CD45-别藻蓝蛋白染色确定)为阳性CTC
表2 膀胱癌中主要循环肿瘤细胞(CTC)检测与分离技术及其应用
参考文献 CTC富集类型 CTC富集技术 CTC检测技术 临床目的 患者数量 优势 不足
Rink等[19] 阳性富集 CellSearch® ICC 预测预后 100例基层浸润性膀胱癌 分析全面 组间差异较大
Naoe等[23] 阳性富集 CellSearch® ICC 辅助治疗,识别转移 12例非转移性尿路上皮癌和14例转移性尿路上皮癌 分析全面 灵敏度中等
Busetto等[24] 阳性富集 CellSearch®、CELLection Dynabeads ICC、RT-PCR 预测复发、进展 155例非基层浸润性膀胱癌 分析全面 对比维度有限
Nicolazzo等[25] 阳性富集 CellSearch® ICC 预测预后 102例非基层浸润性膀胱癌 高灵敏度 缺乏随访数据
Niu等[26] 阳性富集 Graphene oxide (GO) microfluidic chip ICC、RNA-Seq 识别肿瘤相关RNA特征对转移性膀胱癌的预后预测潜力 15例膀胱癌 多维分析高灵敏度 样本数少,价格昂贵
Karl等[27] 阳性富集 CellSearch® ICC 评估疾病状态,监测化疗反应 5例膀胱癌 自动化 样本数少,观察时间短
Okegawa等[28] 阳性富集 CellSearch® ICC 预后评估,疾病监测 16例非转移性尿路上皮癌和20例转移性尿路上皮癌 分析全面 灵敏度中等
Rink等[29] 阳性富集 CellSearch® ICC 预测预后 48例非转移性晚期膀胱癌和5例转移性晚期膀胱癌 高灵敏度 缺乏多变量分析
Abrahamsson等[30] 阳性富集 CellSearch® ICC 检测早期转移,预测预后 88例膀胱尿路上皮癌 分析全面 缺乏随访数据
Krupa等[31] 阳性富集 Epic Science ICC 预测治疗反应,监测治疗效果 33例膀胱癌,肾癌,前列腺癌 高灵敏度 样本数少
Liu等[32] 阴性富集 SE-iFISH FISH 预测预后,结合Ki67评估预后风险 84例膀胱癌 多维度分析 灵敏度中等
Yang等[33] 阴性富集 SE-iFISH FISH 预测预后 196例膀胱癌 分析全面 稳定性不足
表3 不同生物标志物在膀胱癌CTC检测中的临床应用
[1]
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.
[2]
Galvis MM, Romero CS, Bueno TO, et al. Toward a new era for the management of circulating tumor cells[J]. Adv Exp Med Biol, 2021, 1286: 125-134. DOI: 10.1007/978-3-030-55035-6_9.
[3]
Fidler IJ, Poste G. The "seed and soil" hypothesis revisited[J]. Lancet Oncol, 2008, 9(8): 808. DOI: 10.1016/S1470-2045(08)70201-8.
[4]
Dianat-Moghadam H, Azizi M, Eslami-S Z, et al. The role of circulating tumor cells in the metastatic cascade: biology, technical challenges, and clinical relevance[J]. Cancers (Basel), 2020, 12(4): 867. DOI: 10.3390/cancers12040867.
[5]
Rapanotti MC, Cenci T, Scioli MG, et al. Circulating tumor cells: origin, role, current applications, and future perspectives for personalized medicine[J]. Biomedicines, 2024, 12(9): 2137. DOI: 10.3390/biomedicines12092137.
[6]
Jaiswal S. Epithelial mesenchymal transitions: basics, clinical applicability & recent updates [J]. Int J Innov Res Adv Stud (IJIRAS), 2017, 4(6): 624-630.

URL    
[7]
Balmain A, Barrett JC, Moses H, et al. How many mutations are required for tumorigenesis? implications from human cancer data[J]. Mol Carcinog, 1993, 7(3): 139-146. DOI: 10.1002/mc.2940070303.
[8]
Terranova VP, Hic S, Diflorio RM, et al. Tumor cell metastasis[J]. Crit Rev Oncol, 1986, 5(2): 87-114. DOI: 10.1016/s1040-8428(86)80022-1.
[9]
Rushton AJ, Nteliopoulos G, Shaw JA, et al. A review of circulating tumour cell enrichment technologies[J]. Cancers, 2021, 13(5): 970. DOI: 10.3390/cancers13050970.
[10]
Heitzer E, Auer M, Gasch C, et al. Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing[J]. Cancer Res, 2013, 73(10): 2965-2975. DOI: 10.1158/0008-5472.CAN-12-4140.
[11]
中国临床肿瘤学会指南工作委员会。中国临床肿瘤学会(CSCO)乳腺癌诊疗指南2019版[M].北京:人民卫生出版社,2019.
[12]
Gorin MA, Verdone JE, van der Toom E, et al. Circulating tumour cells as biomarkers of prostate, bladder, and kidney cancer[J]. Nat Rev Urol, 2017, 14(2): 90-97. DOI: 10.1038/nrurol.2016.224.
[13]
Jiang H, Gu X, Zuo Z, et al. Prognostic value of circulating tumor cells in patients with bladder cancer: a meta-analysis[J]. PLoS One, 2021, 16(7): e0254433. DOI: 10.1371/journal.pone.0254433.
[14]
Nagrath S, Sequist LV, Maheswaran S, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology[J]. Nature, 2007, 450(7173): 1235-1239. DOI: 10.1038/nature06385.
[15]
Stott SL, Hsu CH, Tsukrov DI, et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip[J]. Proc Natl Acad Sci USA, 2010, 107(43): 18392-18397. DOI: 10.1073/pnas.1012539107.
[16]
Ozkumur E, Shah AM, Ciciliano JC, et al. Inertial focusing for tumor antigen-dependent and-independent sorting of rare circulating tumor cells[J]. Sci Transl Med, 2013, 5(179): 179ra47. DOI: 10.1126/scitranslmed.3005616.
[17]
Khandare J, Bharde A, Jayant S, et al. Abstract 6684: Detection of PD-L1, HER2 and EGFR on circulating tumor cells in carcinoma patients[J]. Cancer Res, 2023, 83(7_Supplement): 6684. DOI: 10.1158/1538-7445.am2023-6684.
[18]
Page R, Patil D, Akolkar D, et al. Circulating tumor cell assay to non-invasively evaluate PD-L1 and other therapeutic targets in multiple cancers[J]. PLoS One, 2022, 17(6): e0270139. DOI: 10.1371/journal.pone.0270139.
[19]
Rink M, Chun FK, Dahlem R, et al. Prognostic role and HER2 expression of circulating tumor cells in peripheral blood of patients prior to radical cystectomy: a prospective study[J]. Eur Urol, 2012, 61(4): 810-817. DOI: 10.1016/j.eururo.2012.01.017.
[20]
刘杰, 李小航, 李安安, 等. 循环肿瘤细胞和循环肿瘤内皮细胞对尿路上皮癌预后的预测价值[J]. 中国肿瘤临床, 2021, 48(12): 614-618. DOI: 10.3969/j.issn.1000-8179.2021.12.424.
[21]
Morelli MB, Amantini C, Rossi de Vermandois JA, et al. Correlation between high PD-L1 and EMT/invasive genes expression and reduced recurrence-free survival in blood-circulating tumor cells from patients with non-muscle-invasive bladder cancer[J]. Cancers (Basel), 2021, 13(23): 5989. DOI: 10.3390/cancers13235989.
[22]
Allory Y, Beukers W, Sagrera A, et al. Telomerase reverse transcriptase promoter mutations in bladder cancer: high frequency across stages, detection in urine, and lack of association with outcome[J]. Eur Urol, 2014, 65(2): 360-366. DOI: 10.1016/j.eururo.2013.08.052.
[23]
Naoe M, Ogawa Y, Morita J, et al. Detection of circulating urothelial cancer cells in the blood using the CellSearch System[J]. Cancer, 2007, 109(7): 1439-1445. DOI: 10.1002/cncr.22543.
[24]
Busetto GM, Ferro M, Del Giudice F, et al. The prognostic role of circulating tumor cells (CTC) in high-risk non-muscle-invasive bladder cancer[J]. Clin Genitourin Cancer, 2017, 15(4): e661-e666. DOI: 10.1016/j.clgc.2017.01.011.
[25]
Nicolazzo C, Busetto GM, Gradilone A, et al. Circulating tumor cells identify patients with super-high-risk non-muscle-invasive bladder cancer: updated outcome analysis of a prospective single-center trial[J]. Oncologist, 2019, 24(5): 612-616. DOI: 10.1634/theoncologist.2018-0784.
[26]
Niu Z, Kozminski M, Day KC, et al. Abstract A003: Characterization of circulating tumor cells from patients with metastatic bladder cancer[J]. Clin Cancer Res, 2024, 30(10_Supplement): A003. DOI: 10.1158/1557-3265.bladder24-a003.
[27]
Karl A, Tritschler S, Hofmann S, et al. Perioperative search for circulating tumor cells in patients undergoing radical cystectomy for bladder cancer[J]. Eur J Med Res, 2009, 14(11): 487-490. DOI: 10.1186/2047-783x-14-11-487.
[28]
Okegawa T, Hayashi K, Hara H, et al. Immunomagnetic quantification of circulating tumor cells in patients with urothelial cancer[J]. Int J Urol, 2010, 17(3): 254-258. DOI: 10.1111/j.1442-2042.2010.02454.x.
[29]
Rink M, Chun FKH, Minner S, et al. Detection of circulating tumour cells in peripheral blood of patients with advanced non-metastatic bladder cancer[J]. BJU Int, 2011, 107(10): 1668-1675. DOI: 10.1111/j.1464-410X.2010.09562.x.
[30]
Abrahamsson J, Aaltonen K, Engilbertsson H, et al. Circulating tumor cells in patients with advanced urothelial carcinoma of the bladder: Association with tumor stage, lymph node metastases, FDG-PET findings, and survival[J]. Urol Oncol, 2017, 35(10): 606.e9-606606.e16. DOI: 10.1016/j.urolonc.2017.05.021.
[31]
Krupa R, Richardson R, Ontiveros P, et al. Abstract 4039: Simultaneous quantification of activated immune cells and PD-L1 expressing circulating tumor cells (CTCs) in peripheral blood of cancer patients receiving checkpoint inhibitor therapy[J]. Cancer Res, 2019, 79(13_Supplement): 4039. DOI: 10.1158/1538-7445.am2019-4039.
[32]
Liu J, Ma C, Li X, et al. Circulating tumor cells correlating with Ki-67 predicts the prognosis of bladder cancer patients[J]. Int Urol Nephrol, 2023, 55(2): 309-318. DOI: 10.1007/s11255-022-03406-y.
[33]
Yang X, Lv J, Zhou Z, et al. Clinical application of circulating tumor cells and circulating endothelial cells in predicting bladder cancer prognosis and neoadjuvant chemosensitivity[J]. Front Oncol, 2022, 11: 802188. DOI: 10.3389/fonc.2021.802188.
[34]
Jin D, Qian L, Xia J, et al. In vivo detection of circulating tumor cells predicts high-risk features in patients with bladder cancer[J]. Med Oncol, 2023, 40(4): 113. DOI: 10.1007/s12032-023-01977-z.
[35]
Anantharaman A, Friedlander T, Lu D, et al. Programmed death-ligand 1 (PD-L1) characterization of circulating tumor cells (CTCs) in muscle invasive and metastatic bladder cancer patients[J]. BMC Cancer, 2016, 16(1): 744. DOI: 10.1186/s12885-016-2758-3.
[36]
Bergmann S, Coym A, Ott L, et al. Evaluation of PD-L1 expression on circulating tumor cells (CTCs) in patients with advanced urothelial carcinoma (UC)[J]. Oncoimmunology, 2020, 9(1): 1738798. DOI: 10.1080/2162402X.2020.1738798.
[37]
Suh Y, Kim SK, Lee HS, et al. Abstract 1359: Detection of PD-L1 positive circulating tumor cells from patient with bladder cancer[J]. Cancer Res, 2019, 79(13_Supplement): 1359. DOI: 10.1158/1538-7445.am2019-1359.
[38]
Bergmann S, Coym A, von Amsberg G, et al. Abstract 2219: Evaluation of PD-L1 expression on circulating tumor cells (CTCs) in patients with advanced urothelial carcinoma of the bladder[J]. Cancer Res, 2019, 79(13_Supplement): 2219. DOI: 10.1158/1538-7445.am2019-2219.
[39]
Nini A, Hoffmann MJ, Lampignano R, et al. Evaluation of HER2 expression in urothelial carcinoma cells as a biomarker for circulating tumor cells[J]. Cytometry B Clin Cytom, 2020, 98(4): 355-367. DOI: 10.1002/cyto.b.21877.
[40]
Gazzaniga P, de Berardinis E, Raimondi C, et al. Circulating tumor cells detection has independent prognostic impact in high-risk non-muscle invasive bladder cancer[J]. Int J Cancer, 2014, 135(8): 1978-1982. DOI: 10.1002/ijc.28830.
[41]
Raimondi C, Gradilone A, Gazzaniga P. Circulating tumor cells in early bladder cancer: insight into micrometastatic disease[J]. Expert Rev Mol Diagn, 2014, 14(4): 407-409. DOI: 10.1586/14737159.2014.908119.
[42]
Soave A, Riethdorf S, Dahlem R, et al. Detection and oncological effect of circulating tumour cells in patients with variant urothelial carcinoma histology treated with radical cystectomy[J]. BJU Int, 2017, 119(6): 854-861. DOI: 10.1111/bju.13782.
[43]
Qi F, Liu Y, Zhao R, et al. Quantitation of rare circulating tumor cells by folate receptor α ligand-targeted PCR in bladder transitional cell carcinoma and its potential diagnostic significance[J]. Tumour Biol, 2014, 35(7): 7217-7223. DOI: 10.1007/s13277-014-1894-0.
[44]
Zhang Z, Fan W, Deng Q, et al. The prognostic and diagnostic value of circulating tumor cells in bladder cancer and upper tract urothelial carcinoma: a meta-analysis of 30 published studies[J]. Oncotarget, 2017, 8(35): 59527-59538. DOI: 10.18632/oncotarget.18521.
[45]
Awadalla A, Abol-Enein H, Gabr MM, et al. Prediction of recurrence and progression in patients with T1G3 bladder cancer by gene expression of circulating tumor cells[J]. Urol Oncol, 2020, 38(4): 278-285. DOI: 10.1016/j.urolonc.2019.12.002.
[46]
Msaouel P, Koutsilieris M. Diagnostic value of circulating tumor cell detection in bladder and urothelial cancer: systematic review and meta-analysis[J]. BMC Cancer, 2011, 11: 336. DOI: 10.1186/1471-2407-11-336.
[47]
Soave A, Riethdorf S, Dahlem R, et al. A nonrandomized, prospective, clinical study on the impact of circulating tumor cells on outcomes of urothelial carcinoma of the bladder patients treated with radical cystectomy with or without adjuvant chemotherapy[J]. Int J Cancer, 2017, 140(2): 381-389. DOI: 10.1002/ijc.30445.
[48]
Azevedo R, Soares J, Peixoto A, et al. Circulating tumor cells in bladder cancer: Emerging technologies and clinical implications foreseeing precision oncology[J]. Urol Oncol Semin Orig Investig, 2018, 36(5): 221-236. DOI: 10.1016/j.urolonc.2018.02.004.
[49]
Pierconti F, Raspollini MR, Martini M, et al. PD-L1 expression in bladder primary in situ urothelial carcinoma: evaluation in BCG-unresponsive patients and BCG responders[J]. Virchows Arch, 2020, 477(2): 269-277. DOI: 10.1007/s00428-020-02755-2.
[50]
Nicolazzo C, de Berardinis E, Gazzaniga P. Liquid biopsy for predicting Bacillus calmette-guérin unresponsiveness in non-muscle-invasive bladder cancer[J]. Eur Urol Oncol, 2021, 4(1): 124-125. DOI: 10.1016/j.euo.2020.09.003.
[51]
Kong D, Zhang W, Yang Z, et al. Correlation between PD-L1 expression ON CTCs and prognosis of patients with cancer: a systematic review and meta-analysis[J]. Oncoimmunology, 2021, 10(1): 1938476. DOI: 10.1080/2162402X.2021.1938476.
[52]
Bouleftour W, Guillot A, Magne N. The anti-nectin 4: a promising tumor cells target. a systematic review[J]. Mol Cancer Ther, 2022, 21(4): 493-501. DOI: 10.1158/1535-7163.MCT-21-0846.
[53]
Calandrella ML, Francesconi S, Caprera C, et al. Nectin-4 and DNA mismatch repair proteins expression in upper urinary tract urothelial carcinoma (UTUC) as a model for tumor targeting approaches: an ImGO pilot study[J]. BMC Cancer, 2022, 22(1): 168. DOI: 10.1186/s12885-022-09259-z.
[54]
Carosino C, Olson D, Snead K, et al. Abstract 1140: Enfortumab vedotin, a Nectin-4 directed ADC, demonstrates compelling tolerability and anti-tumor activity with intravesical instillation in preclinical models of non-muscle invasive bladder cancer[J]. Cancer Res, 2022, 82(12_Supplement): 1140. DOI: 10.1158/1538-7445.am2022-1140.
[55]
Dernbach G, Eich ML, Dragomir MP, et al. Spatial expression of HER2, NECTIN4, and TROP-2 in muscle-invasive bladder cancer and metastases: implications for pathological and clinical management[J]. Mod Pathol, 2025, 38(7): 100753. DOI: 10.1016/j.modpat.2025.100753.
[56]
Goldenberg DM, Sharkey RM. Antibody-drug conjugates targeting TROP-2 and incorporating SN-38: a case study of anti-TROP-2 sacituzumab govitecan[J]. MAbs, 2019, 11(6): 987-995. DOI: 10.1080/19420862.2019.1632115.
[57]
Liu Y, Chen X, Zhang Y, et al. Advancing single-cell proteomics and metabolomics with microfluidic technologies[J]. Analyst, 2019, 144(3): 846-858. DOI: 10.1039/c8an01503a.
[58]
Capuozzo M, Ferrara F, Santorsola M, et al. Circulating tumor cells as predictive and prognostic biomarkers in solid tumors[J]. Cells, 2023, 12(22): 2590. DOI: 10.3390/cells12222590.
[59]
Keller L, Pantel K. Unravelling tumour heterogeneity by single-cell profiling of circulating tumour cells[J]. Nat Rev Cancer, 2019, 19(10): 553-567. DOI: 10.1038/s41568-019-0180-2.
[60]
Brown MS, Muller KE, Pattabiraman DR. Quantifying the epithelial-to-mesenchymal transition (EMT) from bench to bedside[J]. Cancers (Basel), 2022, 14(5): 1138. DOI: 10.3390/cancers14051138.
[61]
Maheswaran S, Haber DA. Ex vivo culture of CTCs: an emerging resource to guide cancer therapy[J]. Cancer Res, 2015, 75(12): 2411-2415. DOI: 10.1158/0008-5472.CAN-15-0145.
[62]
Kim TJ, Moon HW, Kang S, et al. Urovysion FISH could be effective and useful method to confirm the identity of cultured circulating tumor cells from bladder cancer patients[J]. J Cancer, 2019, 10(14): 3259-3266. DOI: 10.7150/jca.30079.
[63]
Kolostova K, Cegan M, Bobek V. Circulating tumour cells in patients with urothelial tumours: Enrichment and in vitro culture[J]. Can Urol Assoc J, 2014, 8(9-10): E715-E720. DOI: 10.5489/cuaj.1978.
[64]
Yanagisawa K, Toratani M, Asai A, et al. Convolutional neural network can recognize drug resistance of single cancer cells[J]. Int J Mol Sci, 2020, 21(9): 3166. DOI: 10.3390/ijms21093166.
[65]
Zeune LL, Boink YE, van Dalum G, et al. Deep learning of circulating tumour cells[J]. Nat Mach Intell, 2020, 2(2): 124-133. DOI: 10.1038/s42256-020-0153-x.
[1] 杨志, 夏雪峰, 管文贤. DeepSurv深度学习模型辅助胃癌术后精准化疗策略研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 501-505.
[2] 程必盛, 吴芃. 2025EAU年会要点:微创、远程与精准泌尿外科的发展趋势[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 693-699.
[3] 杨硕, 郭佳. 液体活检在前列腺癌进展监测中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 558-564.
[4] 余琪伟, 王省博, 姚林亚, 张曦, 吴余凡, 曾学明, 曾庆琪. 经皮胫神经刺激联合索利那新治疗前列腺癌根治术后膀胱功能障碍的疗效观察[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 586-592.
[5] 张欣红, 马玉容, 邱志磊, 李金鹂, 王倩, 董海静. 膀胱癌泌尿造口患者社会疏离的潜在剖面分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 639-644.
[6] 腾鹏, 田景昌, 鄂春翔, 向阳, 田伯宇. 肌层浸润性膀胱癌患者根治性膀胱切除术预后列线图模型的构建及验证[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 645-652.
[7] 唐雪飞, 蒋润民, 倪云峰, 雷杰, 王文辰, 赵雅波, 马首政, 姜涛. 小细胞肺癌和大细胞神经内分泌癌微生物群特征[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(05): 721-726.
[8] 刘丽辉, 白玉新, 张进, 冯巍, 黄琰琰, 邹梦斯, 刘彩红. 血清生物标志物联合检测对支气管哮喘患儿生物靶向治疗效果的预测意义[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(05): 796-801.
[9] 袭厚榕, 隋晓峰. 基于生物信息学分析乳腺癌组织STIP1表达在免疫浸润中的作用[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(04): 208-216.
[10] 方兴保, 庞国莲, 李月宏, 蔡艳. 基于多组学分析MCAM在肝癌中表达及其与生存预后和免疫细胞浸润的关系[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 716-724.
[11] 姚金平, 郭涛, 张逸辰, 常磊, 冯雨舟, 崔精, 陈建欢, 鲍传庆. 基于免疫微环境分析探讨FN1与DOCK2在结肠癌中的预后价值[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(04): 333-344.
[12] 苟亚妮, 申群斌, 张丽, 卢佳佳. 幽门螺杆菌根除治疗与肠道菌群失调的互作机制、挑战与干预策略探究[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(04): 359-363.
[13] 贺方正, 吴涛, 廖长胜, 李锡勇, 牛萌煊, 韩鹏飞. 创伤后骨关节炎模型大鼠血浆中microRNA特征组学研究[J/OL]. 中华老年骨科与康复电子杂志, 2025, 11(05): 257-270.
[14] 袁瑛, 徐超, 崔砚, 徐江, 徐如祥. 植入式自适应深部脑刺激在帕金森病治疗中的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(04): 193-198.
[15] 侯雨函, 姜福金, 王苏贵. 膀胱癌免疫治疗的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(06): 471-475.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?